1. bookVolume 27 (2023): Issue 1 (January 2023)
Journal Details
First Published
26 Mar 2010
Publication timeframe
2 times per year
Open Access

The Contribution of Pyrolysis of Water Hyacinth to South Africa’s Low-carbon and Climate Resilient Economy Transition: A Mini Review

Published Online: 13 Feb 2023
Volume & Issue: Volume 27 (2023) - Issue 1 (January 2023)
Page range: 103 - 116
Received: 02 May 2022
Accepted: 19 Jan 2023
Journal Details
First Published
26 Mar 2010
Publication timeframe
2 times per year

[1] Sguazzin A. South Africa Adopts Tougher Emission Goal Before COP26 New York City, USA: Bloomberg Media; 2021. [Online]. [Accessed 05.01.2022]. Available: https://www.bloomberg.com/news/articles/2021-09-20/south-africa-adopts-lower-emission-target-ahead-of-cop26-meeting Search in Google Scholar

[2] Mkhize V. COP26: South Africa hails deal to end reliance on coal Johannesburg: BBC Africa. 2021 [Online]. [Accessed 5.01.2022]. Available: https://www.bbc.com/news/world-africa-59135169 Search in Google Scholar

[3] Government of South Africa. Presidency on international partnership to support a just transition to a low carbon economy and a climate resilient society 2021 . [Online]. [Accessed 5.01.2022]. Available: https://www.gov.za/speeches/presidency-international-partnership-support-just-transition-2-nov-2021-0000 Search in Google Scholar

[4] World Bank Group. South Africa Country Climate and Development Report. Washington, DC: World Bank; 2022 [Online]. [Accessed 10.01.2023]. Available: https://openknowledge.worldbank.org/handle/10986/38216 Search in Google Scholar

[5] Demirbas M. F., Balat M., Balat H. Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management 2009:50(7):1746–60. https://doi.org/10.1016/j.enconman.2009.03.013 Search in Google Scholar

[6] IEA Bioenergy. Implementation of Bioenergy in South Africa - 2021 Update. 2021 [Online]. [Accessed 10.01.2023]. Available: https://www.ieabioenergy.com/wp-content/uploads/2021/11/CountryReport2021_SouthAfrica_final.pdf Search in Google Scholar

[7] Ilo O. P., Nkomo S. L., Mkhize N. M., Mutanga O., Simatele M. D. Optimisation of process parameters using response surface methodology to improve the liquid fraction yield from pyrolysis of water hyacinth. Environmental Science and Pollution Research 2023:30:6681–6704. https://doi.org/10.1007/s11356-022-22639-z Search in Google Scholar

[8] Ilo O. P., Simatele M. D., Nkomo S. L., Mkhize N. M., Prabhu N.G. The Benefits of Water Hyacinth (Eichhornia crassipes) for Southern Africa: A Review. Sustainability 2020:12(21). https://doi.org/10.3390/su12219222 Search in Google Scholar

[9] Van de Velden M., Baeyens J., Brems A., Janssens B., Dewil R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy 2010:35:232–42. https://doi.org/10.1016/j.renene.20 Search in Google Scholar

[10] International Energy Agency. Potential Contribution of Bioenergy to the Worlds Future Energy Demand. 2007. Contract No.: IEA BIOENERGY: ExCo: 2007:02. Search in Google Scholar

[11] Kumar A., Samadder S.R. Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy 2020:197:117253. https://doi.org/10.1016/j.energy.2020.117253 Search in Google Scholar

[12] Rocamora I., Wagland S. T., Villa R., Simpson E. W., Fernández O., Bajón-Fernández Y. Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance. Bioresource Technology 2020:299:122681. https://doi.org/10.1016/j.biortech.2019.122681 Search in Google Scholar

[13] Rabii A., Aldin S., Dahman Y., Elbeshbishy E. A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi -Stage Digester Configuration. Energies 2019:12(6):1106. https://doi.org/10.3390/en12061106 Search in Google Scholar

[14] Rahman M. A. Pyrolysis of water hyacinth in a fixed bed reactor: Parametric effects on product distribution, characterization and syngas evolutionary behavior. Waste Management 2018:80:310–318. https://doi.org/10.1016/j.wasman.2018.09.028 Search in Google Scholar

[15] Wauton I., Ogbeide S. E. Investigation of the production of pyrolytic bio-oil from water hyacinth (Eichhornia crassipes) in a fixed bed reactor using pyrolysis process. Biofuels 2019:13(2):189–195. https://doi.org/10.1080/17597269.2019.1660061 Search in Google Scholar

[16] Lam S. S., Wan Mahari W. A., Jusoh A., Chong C. T., Lee C. L., Chase H. A. Pyrolysis using microwave absorbents as reaction bed: An improved approach to transform used frying oil into biofuel product with desirable properties. Journal of Cleaner Production 2017:147:263–272. https://doi.org/10.1016/j.jclepro.2017.01.085 Search in Google Scholar

[17] Stanke A., Kampars V., Lazdovica K. Synthesis, Characterization and Catalytical Effects of Fe Contents on Pyrolysis of Cellulose with Fe2O3/SBA-15 Catalysts. Environmental and Climate Technologies 2020:24(2):92–102. https://doi.org/10.2478/rtuect-2020-0057 Search in Google Scholar

[18] Brassard P., et al. Biochar for soil amendment. In: Mejdi J. L. L, editor. Char and Carbon Materials Derived from Biomass. Elsevier, 2019:109–46. https://doi.org/10.1016/B978-0-12-814893-8.00004-3 Search in Google Scholar

[19] Rashidi N. A., Yusup S. Biochar as potential precursors for activated carbon production: parametric analysis and multi-response optimization. Environmental Science and Pollution Research 2020:27(22):27480–27490. https://doi.org/10.1007/s11356-019-07448-1 Search in Google Scholar

[20] Restuccia L., et al. Mechanical characterization of different biochar-based cement composites composites. Procedia Structural Integrity 2020:25:226–233. https://doi.org/10.1016/j.prostr.2020.04.027 Search in Google Scholar

[21] Kumar R., et al. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renewable and Sustainable Energy Reviews 2020:123:109763. https://doi.org/10.1016/j.rser.2020.109763 Search in Google Scholar

[22] Nkosi N., Muzenda E., Mamvura T. A., Belaid M., Patel B. The Development of a Waste Tyre Pyrolysis Production Plant Business Model for the Gauteng Region, South Africa. Processes 2020:8(7):766. https://doi.org/10.3390/pr8070766 Search in Google Scholar

[23] Mkhize N. M., van der Gryp P., Danon B., Görgens J. F. Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. Journal of Analytical and Applied Pyrolysis 2016:120:314–320. https://doi.org/10.1016/j.jaap.2016.04.019 Search in Google Scholar

[24] Matthew H., Muhammed A., David N. Understanding the impact of a low carbon transition on South Africa. London, United Kingdom: Climate Policy Initiave Enegy Finance. 2019. [Online]. [Accessed 15.04.2022]. Available: https://climatepolicyinitiative.org/wp-content/uploads/2019/03/CPI-EF-Understanding-the-impact-of-a-low-carbon-transition-on-South-Africa-2019.pdf Search in Google Scholar

[25] International Renewable Energy Agency. Global Bioenergy Supply and Demand Projections Abu Dhabi: International Renewable Energy Agency. 2014 [Online]. [Accessed 15.04.2022]. Available: http://www.globalbioenergy.org/uploads/media/1409_IRENA_-_REmap_2030_Biomass_paper_2014.pdf Search in Google Scholar

[26] Petrie B, Macqueen D. South African biomass energy: little heeded but much needed. IIED briefing paper-International Institute for Environment and Development. 2013(17165). [Online]. [Accessed 29.01.2022]. Available: https://pubs.iied.org/sites/default/files/pdfs/migrate/17165IIED.pdf Search in Google Scholar

[27] Akinbami O. M., Oke S. R., Bodunrin M. O. The state of renewable energy development in South Africa: An overview. Alexandria Engineering Journal 2021:60(6):5077–5093. https://doi.org/https://doi.org/10.1016/j.aej.2021.03.065 Search in Google Scholar

[28] PwC South Africa. Low carbon economy: A review of strategies for transforming South Africa into a low-carbon economy. PricewaterhouseCoopers. 2011. [Online]. [Accessed 15.02.2022]. Available: https://www.pwc.co.za/en/publications/low-carbon-economy-article.html Search in Google Scholar

[29] Climate Action Tracker. South Africa 2021 [Online]. [Accessed 3.04.2022]. Available: https://climateactiontracker.org/countries/south-africa/policies-action/ Search in Google Scholar

[30] Ramokgopa D. Tackling South Africa’s Infrastructure Deficit: The Role of Development Finance Institutions Johannesburg: South African Institute of International Affairs. 2021. [Online]. [Accessed 27.03.2022]. Available: https://media.africaportal.org/documents/Policy-Insights-102-ramokgopa.pdf Search in Google Scholar

[31] Development Bank of Southern Africa. Is Africa ready for a low-carbon economy? 2022 [Online]. [Accessed 27.03.2022]. Available: https://www.dbsa.org/article/africa-ready-low-carbon-economy Search in Google Scholar

[32] Li Y-H., Chang F-M., Huang B., Song Y-P., Zhao H-Y., Wang K-J. Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage. Fuel 2020:266:117053. https://doi.org/10.1016/j.fuel.2020.117053 Search in Google Scholar

[33] Inayat A., et al. Activated Carbon Production from Coffee Waste via Slow Pyrolysis Using a Fixed Bed Reactor. Environmental and Climate Technologies 2022:26(1):720–729. https://doi.org/10.2478/rtuect-2022-0055 Search in Google Scholar

[34] Uchimiya M., Klasson K. T., Wartelle L. H., Lima I. M. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere 2011:82(10):1431–1437. https://doi.org/10.1016/j.chemosphere.2010.11.050 Search in Google Scholar

[35] Glazunova D. M, Kuryntseva P. A, Selivanovskaya S. Y, Galitskaya P. Y. Assessing the Potential of Using Biochar as a Soil Conditioner. IOP Conference Series: Earth and Environmental Science, 2018:107. https://doi.org/10.1088/1755-1315/107 Search in Google Scholar

[36] Lanzaa G., Rebensburgb P., Kerna J., Lentzschb P., Wirth S. Impact of chars and readily available carbon on soil microbialrespiration and microbial community composition in a dynamic incubation experiment. Soil & Tillage Research 2016:164:18–24. https://doi.org/10.1016/j.still.2016.01.005 Search in Google Scholar

[37] Dai Z., et al. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar 2021:3(3):239–254. https://doi.org/10.1007/s42773-021-00099-x Search in Google Scholar

[38] Bird M. I., Wynn J. G., Saiz G., Wurster C. M., McBeath A. The Pyrogenic Carbon Cycle. Annual Review of Earth and Planetary Sciences 2015:43(1):273–298. https://doi.org/10.1146/annurev-earth-060614-105038 Search in Google Scholar

[39] Woolf D., Amonette J. E., Street-Perrott F. A., Lehmann J., Joseph S. Sustainable biochar to mitigate global climate change. Nature Communications 2010:1(1):Art56. https://doi.org/10.1038/ncomms1053 Search in Google Scholar

[40] Schmidt H. P., Hagemann N., Draper K., Kammann C. The use of biochar in animal feeding. Peer J. Life and Environment 2019:7:e7373. https://doi.org/10.7717/peerj.7373 Search in Google Scholar

[41] Man K. Y., Chow K. L., Man Y. B., Mo W. Y., Wong M. H. Use of biochar as feed supplements for animal farming. Critical Reviews in Environmental Science and Technology 2021:51(2):187–217. https://doi.org/10.1080/10643389.2020.1721980 Search in Google Scholar

[42] Eger M., Graz M., Riede S., Breves G. Application of MootralTM Reduces Methane Production by Altering the Archaea Community in the Rumen Simulation Technique. Frontiers in Microbiology 2018:9. https://doi.org/10.3389/fmicb.2018.02094 Search in Google Scholar

[43] Campuzano F., Brown R. C., Martínez J. D. Auger reactors for pyrolysis of biomass and wastes. Renewable and Sustainable Energy Reviews 2019:102:372–409. https://doi.org/10.1016/j.rser.2018.12.014 Search in Google Scholar

[44] Lyu G., Wu S., Zhang H. Estimation and Comparison of Bio-Oil Components from Different Pyrolysis Conditions. Frontiers in Energy Research 2015:3. https://doi.org/10.3389/fenrg.2015.00028 Search in Google Scholar

[45] Jahirul M., Rasul M., Chowdhury A., Ashwath N. Biofuels Production through Biomass Pyrolysis – A Technological Review. Energies 2012:5(12):4952–5001. https://doi.org/10.3390/en5124952 Search in Google Scholar

[46] Alvarez-Chavez B. J., Godbout S., Palacios-Rios J. H., Le Roux É., Raghavan V. Physical, chemical, thermal and biological pre-treatment technologies in fast pyrolysis to maximize bio-oil quality: A critical review. Biomass and Bioenergy 2019:128:105333. https://doi.org/10.1016/j.biombioe.2019.105333 Search in Google Scholar

[47] Czajczyńska D., et al. Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress 2017:3:171–197. https://doi.org/10.1016/j.tsep.2017.06.003 Search in Google Scholar

[48] Emdadul Hoque M., Rashid F. Co-Pyrolysis of Biomass Solid Waste and Aquatic Plants. V. Silva and C. Eduardo Tuna (eds), Gasification. IntechOpen, 2021. https://doi.org/10.5772/intechopen.96228 Search in Google Scholar

[49] Hu Z., Ma X., Li L. Optimal conditions for the catalytic and non-catalytic pyrolysis of water hyacinth. Energy Conversion and Management 2015:94:337–344. https://doi.org/10.1016/j.enconman.2015.01.087 Search in Google Scholar

[50] Zhang H., Cheng Y-T., Vispute T. P., Xiao R., Huber G. W. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy and Environmental Science 2011:4(6):2297. https://doi.org/10.1039/c1ee01230d Search in Google Scholar

[51] Hussain Z., et al. Production of Highly Upgraded Bio-oils through Two-Step Catalytic Pyrolysis of Water Hyacinth. Energy & Fuels 2017:31(11):12100–12107. https://doi.org/10.1021/acs.energyfuels.7b01252 Search in Google Scholar

[52] Jarvik O., et al. Co-Pyrolysis and Co-Gasification of Biomass and Oil Shale. Environmental and Climate Technologies 2020:24(1):624–637. https://doi.org/10.2478/rtuect-2020-0038 Search in Google Scholar

[53] Carpenter D., Westover T. L., Czernik S., Jablonski W. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chemistry 2014:16(2):384–406. https://doi.org/10.1039/c3gc41631c Search in Google Scholar

[54] Pattiya A. Fast pyrolysis. In: Rosendahl L., editor. Direct Thermochemical Liquefaction for Energy Applications. First ed. United Kingdom: Woodhead Publishing, 2018. https://doi.org/https://doi.org/10.1016/C2015-0-06012-9 Search in Google Scholar

[55] Hlavsová A., Corsaro A., Raclavská H., Juchelková D., Škrobánková H., Frydrych J. Syngas Production from Pyrolysis of Nine Composts Obtained from Nonhybrid and Hybrid Perennial Grasses. The Scientific World Journal 2014:2014:Article ID 723092. https://doi.org/10.1155/2014/723092 Search in Google Scholar

[56] Nan C., Huili Z., Yimin D., Jan B. Biochar from Biomass Slow Pyrolysis. IOP Conference Series: Earth and Environmental Science, 2020:586. https://doi.org/10.1088/1755-1315/586 Search in Google Scholar

[57] Raza M., et al. Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing. Sustainability 2021:13(19). https://doi.org/10.3390/su131911061 Search in Google Scholar

[58] Younis M. R., Farooq M., Imran M., Kazim A. H., Shabbir A. Characterization of the viscosity of bio-oil produced by fast pyrolysis of the wheat straw. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2019:43(15):1853–68. https://doi.org/10.1080/15567036.2019.1666181 Search in Google Scholar

[59] Zhang Y., et al. Gasification Technologies and Their Energy Potentials. In: Taherzadeh M. J., Bolton K., Wong J., Pandey A., (eds). Sustainable Resource Recovery and Zero Waste Approaches. Elsevier, 2019:193–206. https://doi.org/10.1016/B978-0-444-64200-4.00014-1 Search in Google Scholar

[60] Sukarni S., Widiono A. E, Sumarli S., Wulandari R., Nauri I. M., Permanasari A. A. Thermal decomposition behavior of water hyacinth (Eichhornia crassipes) under an inert atmosphere. International Mechanical and Industrial Engineering Conference, 2018:204. https://doi.org/10.1051/matecconf/201820400010 Search in Google Scholar

[61] Garcia-Nunez J. A., et al. Historical Developments of Pyrolysis Reactors: A Review. Energy & Fuels 2017:31(6):5751–5775. https://doi.org/10.1021/acs.energyfuels.7b00641 Search in Google Scholar

[62] Bello M. M., Abdul Raman A. A., Purushothaman M. Applications of fluidized bed reactors in wastewater treatment – A review of the major design and operational parameters. Journal of Cleaner Production 2017:141:1492–1514. https://doi.org/10.1016/j.jclepro.2016.09.148 Search in Google Scholar

[63] Vaibhav D., Thallada B. Chapter 9 - Pyrolysis of Biomass. Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second ed.), Biomass, Biofuels, Biochemicals 2019:217–244. https://doi.org/10.1016/B978-0-12-816856-1.00009-9 Search in Google Scholar

[64] Clifford C. B. Biomass Pyrolysis Pennsylvania, USA: Penn State’s College of Earth and Mineral Sciences; 2020 [Online]. [Accessed 8.01.2022]. Available: https://www.e-education.psu.edu/egee439/node/537#:~:text=Classification%20of%20pyrolysis%20methods,ultra%2Dfast%2Fflash%20pyrolysis. Search in Google Scholar

[65] Werther J, Hartge E-U. Modeling of Industrial Fluidized-bed reactors. Industrial & Engineering Chemistry Research 2004:43(18):5593–5604. https://doi.org/10.1021/ie030760t Search in Google Scholar

[66] Gunjal P. R., Ranade V.V. Catalytic Reaction Engineering. In: Joshi S. S., Ranade V. V., e(ds). Industrial Catalytic Processes for Fine and Specialty Chemicals, 2016. https://doi.org/10.1016/C2013-0-18518-2 Search in Google Scholar

[67] Gholizadeh M., et al. Progress of the development of reactors for pyrolysis of municipal waste. Sustainable Energy & Fuels 2020:4(12):5885–5915. https://doi.org/10.1039/d0se01122c Search in Google Scholar

[68] Chen D., Yin L., Wang H., He P. Pyrolysis technologies for municipal solid waste: A review. Waste Management 2014:34(12):2466–2486. https://doi.org/10.1016/j.wasman.2014.08.004 Search in Google Scholar

[69] Biswas B., Singh R., Krishna B. B., Kumar J., Bhaskar T. Pyrolysis of azolla, sargassum tenerrimum and water hyacinth for production of bio-oil. Bioresource Technology 2017:242:139–145. https://doi.org/10.1016/j.biortech.2017.03.044 Search in Google Scholar

[70] González H., Zarate Evers C. M., Alviso D., Rolon J. C. Numerical study of a rotary kiln. A case study of an industrial plant in Paraguay. Proceedings of the 16th Brazilian Congress of Thermal Sciences and Engineering, 2016. https://doi.org/10.26678/ABCM.ENCIT2016.CIT2016-0239 Search in Google Scholar

[71] da Silva J. D. O., Wisniewski A. Jr., Carregosa I. S. C., da Silva W. R., Abud A. K. dS., de Oliveira A. M. Jr. Thermovalorization of acerola industrial waste by pyrolysis in a continuous rotary kiln reactor. Journal of Analytical and Applied Pyrolysis 2022:161:105373. https://doi.org/10.1016/j.jaap.2021.105373 Search in Google Scholar

[72] Puy N., et al. Valorisation of forestry waste by pyrolysis in an auger reactor. Waste Management 2011:31(6):1339–1349. https://doi.org/10.1016/j.wasman.2011.01.020 Search in Google Scholar

[73] Rego F., et al. Investigation of the role of feedstock properties and process conditions on the slow pyrolysis of biomass in a continuous auger reactor. Journal of Analytical and Applied Pyrolysis 2022:161:105378. https://doi.org/10.1016/j.jaap.2021.105378 Search in Google Scholar

[74] Veses A., Aznar M., López J. M., Callén M. S., Murillo R., García T. Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials. Fuel 2015:141:17–22. https://doi.org/10.1016/j.fuel.2014.10.044 Search in Google Scholar

[75] Varma A. K., Thakur L. S., Shankar R., Mondal P. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products. Waste Management 2019:89:224–235. https://doi.org/10.1016/j.wasman.2019.04.016 Search in Google Scholar

[76] Tag A. T., Duman G., Ucar S., Yanik J. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. Journal of Analytical and Applied Pyrolysis 2016:120:200–206. https://doi.org/10.1016/j.jaap.2016.05.006 Search in Google Scholar

[77] Chatterjee R., et al. Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption. Frontiers in Energy Research 2020:8. https://doi.org/10.3389/fenrg.2020.00085 Search in Google Scholar

[78] Qurat ul A., Shafiq M., Capareda S. C., Firdaus e. B. Effect of different temperatures on the properties of pyrolysis products of Parthenium hysterophorus. Journal of Saudi Chemical Society 2021:25(3):101197. https://doi.org/10.1016/j.jscs.2021.101197 Search in Google Scholar

[79] Alhwayzee M. Experimental Investigation of the Effects of some significant parameters on the pyrolysis of solid materials. IOP Conf Series: Materials Science and Engineering 2018:433:012066. https://doi.org/10.1088/1757-899X/433/1/012066 Search in Google Scholar

[80] Sharma A., Pareek V., Zhang D. Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renewable and Sustainable Energy Reviews 2015:50:1081–1096. https://doi.org/https://doi.org/10.1016/j.rser.2015.04.193 Search in Google Scholar

[81] Fassinou W. F., Van de Steene L., Toure S., Volle G., Girard P. Pyrolysis of Pinus pinaster in a two-stage gasifier: Influence of processing parameters and thermal cracking of tar. Fuel Processing Technology 2009:90(1):75–90. https://doi.org/10.1016/j.fuproc.2008.07.016 Search in Google Scholar

[82] Pourkarimi S., Hallajisani A., Alizadehdakhel A., Nouralishahi A. Biofuel production through micro- and macroalgae pyrolysis – A review of pyrolysis methods and process parameters. Journal of Analytical and Applied Pyrolysis 2019:142:104599. https://doi.org/10.1016/j.jaap.2019.04.015 Search in Google Scholar

Recommended articles from Trend MD