1. bookVolume 49 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
eISSN
1581-3207
First Published
30 Apr 2007
Publication timeframe
4 times per year
Languages
English
Open Access

Blood-brain barrier permeability imaging using perfusion computed tomography

Published Online: 25 Mar 2015
Volume & Issue: Volume 49 (2015) - Issue 2 (June 2015)
Page range: 107 - 114
Received: 02 Dec 2013
Accepted: 02 Mar 2014
Journal Details
License
Format
Journal
eISSN
1581-3207
First Published
30 Apr 2007
Publication timeframe
4 times per year
Languages
English

1. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 2006; 1: 223-36.10.1007/s11481-006-9025-318040800Search in Google Scholar

2. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57: 173-85.10.1124/pr.57.2.415914466Search in Google Scholar

3. Kaur C, Ling EA. Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res 2008; 5: 71-81.10.2174/15672020878356564518289024Search in Google Scholar

4. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004; 16: 1-13.10.1016/j.nbd.2003.12.01615207256Search in Google Scholar

5. Lin K, Kazmi KS, Law M, Babb J, Peccerelli N, Pramanik BK. Measuring elevated microvascular permeability and predicting hemorrhagic transformation in acute ischemic stroke using first-pass dynamic perfusion CT imaging. AJNR Am J Neuroradiol 2007; 28: 1292-8.10.3174/ajnr.A0539797767117698530Search in Google Scholar

6. Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol 2007; 28: 1850-8.10.3174/ajnr.A0831813426317998415Search in Google Scholar

7. Bisdas S, Hartel M, Cheong LH, Koh TS, Vogl TJ. Prediction of subsequent hemorrhage in acute ischemic stroke using permeability CT imaging and a distributed parameter tracer kinetic model. J Neuroradiol 2007; 34: 101-8.10.1016/j.neurad.2007.02.00317383003Search in Google Scholar

8. Dankbaar JW, Hom J, Schneider T, Cheng SC, Lau BC, van der Schaaf I, et al. Accuracy and anatomical coverage of perfusion CT assessment of the bloodbrain barrier permeability: one bolus versus two boluses. Cerebrovasc Dis 2008; 26: 600-5.10.1159/000165113291436018946215Search in Google Scholar

9. Correale J, Villa A. Cellular elements of the blood-brain barrier. Neurochem Res 2009; 34: 2067-77.10.1007/s11064-009-0081-y19856206Search in Google Scholar

10. Farrell CL, Pardridge WM. Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: an electron microscopic immunogold study. Proc Natl Acad Sci USA 1991; 88: 5779-83.10.1073/pnas.88.13.5779519612062858Search in Google Scholar

11. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 1993; 123: 1777-88.10.1083/jcb.123.6.1777Search in Google Scholar

12. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998; 141: 1539-50.10.1083/jcb.141.7.1539Search in Google Scholar

13. Bazzoni G, Tonetti P, Manzi L, Cera MR, Balconi G, Dejana E. Expression of junctional adhesion molecule-A prevents spontaneous and random motility. J Cell Sci 2005; 118: 623-32.10.1242/jcs.01661Search in Google Scholar

14. Nasdala I, Wolburg-Buchholz K, Wolburg H, Kuhn A, Ebnet K, Brachtendorf G, et al. A transmembrane tight junction protein selectively expressed on endothelial cells and platelets. J Biol Chem 2002; 277: 16294-303.10.1074/jbc.M111999200Search in Google Scholar

15. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 1998; 273: 29745-53.10.1074/jbc.273.45.29745Search in Google Scholar

16. Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 1998; 141: 199-208.10.1083/jcb.141.1.199Search in Google Scholar

17. Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 2000; 275: 27979-88.10.1074/jbc.M002363200Search in Google Scholar

18. Pardridge WM. Molecular biology of the blood-brain barrier. Mol Biotechnol 2005; 30: 57-70.10.1385/MB:30:1:057Search in Google Scholar

19. Hamm S, Dehouck B, Kraus J, Wolburg-Buchholz K, Wolburg H, Risau W, et al. Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res 2004; 315: 157-66.10.1007/s00441-003-0825-y14615934Search in Google Scholar

20. Sa-Pereira I, Brites D, Brito MA. Neurovascular unit: a focus on pericytes. Mol Neurobiol 2012; 45: 327-47.10.1007/s12035-012-8244-222371274Search in Google Scholar

21. Tao-Cheng JH, Brightman MW. Development of membrane interactions between brain endothelial cells and astrocytes in vitro. Int J Dev Neurosci 1988; 6: 25-37.10.1016/0736-5748(88)90026-3Search in Google Scholar

22. Zloko vic BV. The blood-brain barrier in health and chronic eurodegenerative disorders. Neuron 2008; 57: 178-201.10.1016/j.neuron.2008.01.00318215617Search in Google Scholar

23. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37: 13-25.10.1016/j.nbd.2009.07.03019664713Search in Google Scholar

24. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7: 41-53.10.1038/nrn182416371949Search in Google Scholar

25. Kellogg GE, Fornabaio M, Chen DL, Abraham DJ, Spyrakis F, Cozzini P, et al. Tools for building a comprehensive modeling system for virtual screening under real biological conditions: the computational titration algorithm. J Mol Graph Model 2006; 24: 434-9.10.1016/j.jmgm.2005.09.00116236534Search in Google Scholar

26. Bisdas S, Donnerstag F, Ahl B, Bohrer I, Weissenborn K, Becker H. Comparison of perfusion computed tomography with diffusion-weighted magnetic resonance imaging in hyperacute ischemic stroke. J Comput Assist Tomogr 2004; 28: 747-55.10.1097/00004728-200411000-0000415538146Search in Google Scholar

27. Bisdas S, Donnerstag F, Berding G, Vogl TJ, Thng CH, Koh TS. Computed tomography assessment of cerebral perfusion using a distributed parameter tracer kinetics model: validation with H(2)((15))O positron emission tomography measurements and initial clinical experience in patients with acute stroke. J Cereb Blood Flow Metab 2008; 28: 402-11.10.1038/sj.jcbfm.960052217593946Search in Google Scholar

28. Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY. A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. Am J Neuroradiol 2000; 21: 462-70.Search in Google Scholar

29. Hoeffner EG, Case I, Jain R, Gujar SK, Shah GV, Deveikis JP, et al. Cerebral perfusion CT: technique and clinical applications. Radiology 2004; 231: 632-44.10.1148/radiol.231302148815118110Search in Google Scholar

30. Wintermark M. Brain perfusion-CT in acute stroke patients. Eur Radiol 2005; 15(Suppl 4): D28-31.10.1007/s10406-005-0112-y16479642Search in Google Scholar

31. Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol 2003; 76: 220-31.Search in Google Scholar

32. Lee TY, Purdie TG, Stewart E. CT imaging of angiogenesis. Q J Nucl Med 2003; 47: 171-87.Search in Google Scholar

33. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of bloodto- brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983; 3: 1-7.10.1038/jcbfm.1983.16822610Search in Google Scholar

34. Dankbaar JW, Hom J, Schneider T, Cheng SC, Lau BC, van der Schaaf I, et al. Dynamic perfusion CT assessment of the blood-brain barrier permeability: first pass versus delayed acquisition. Am J Neuroradiol 2008; 29: 1671-6.10.3174/ajnr.A1203Search in Google Scholar

35. Hom J, Dankbaar JW, Schneider T, Cheng SC, Bredno J, Wintermark M. Optimal duration of acquisition for dynamic perfusion CT assessment of blood-brain barrier permeability using the Patlak model. Am J Neuroradiol 2009; 30: 1366-70.10.3174/ajnr.A1592Search in Google Scholar

36. Jain R, Ellika SK, Scarpace L, Schultz LR, Rock JP, Gutierrez J, et al.Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. Am J Neuroradiol 2008; 29: 694-700.10.3174/ajnr.A0899Search in Google Scholar

37. Johnson JA, Wilson TA. A model for capillary exchange. Am J Physiol 1966; 210: 1299-303.10.1152/ajplegacy.1966.210.6.1299Search in Google Scholar

38. Koh TS, Cheong LH, Tan CK, Lim CC. A distributed parameter model of cerebral blood-tissue exchange with account of capillary transit time distribution. Neuroimage 2006; 30: 426-35.10.1016/j.neuroimage.2005.09.032Search in Google Scholar

39. Sourbron SP, Buckley DL. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol 2012; 57: R1-33.10.1088/0031-9155/57/2/R1Search in Google Scholar

40. Schneider T, Hom J, Bredno J, Dankbaar JW, Cheng SC, Wintermark M. Delay correction for the assessment of blood-brain barrier permeability using firstpass dynamic perfusion CT. Am J Neuroradiol 2011; 32: E134-8.10.3174/ajnr.A2152Search in Google Scholar

41. Crone C. The Permeability of Capillaries in Various Organs as Determined by Use of the ‘Indicator Diffusion’ Method. Acta Physiol Scand 1963; 58: 292-305.10.1111/j.1748-1716.1963.tb02652.xSearch in Google Scholar

42. Miles KA. Perfusion CT for the assessment of tumour vascularity: which protocol? Br J Radiol 2003; 76 (Spec No 1): S36-42.10.1259/bjr/18486642Search in Google Scholar

43. Lee TY. Functional CT: physiological models. Trends Biotechnol 2002; 20 (Suppl 8): S3-S10.10.1016/S0167-7799(02)02035-8Search in Google Scholar

44. Larson KB, Markham J, Raichle ME. Tracer-kinetic models for measuring cerebral blood flow using externally detected radiotracers. J Cereb Blood Flow Metab 1987; 7: 443-63.10.1038/jcbfm.1987.88Search in Google Scholar

45. St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 1998; 18: 1365-77.Search in Google Scholar

46. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156: 1363-80.10.1016/S0002-9440(10)65006-7Search in Google Scholar

47. Bisdas S, Yang X, Lim CC, Vogl TJ, Koh TS. Delineation and segmentation of cerebral tumors by mapping blood-brain barrier disruption with dynamic contrast-enhanced CT and tracer kinetics modeling-a feasibility study. Eur Radiol 2008; 18: 143-51.10.1007/s00330-007-0726-717701183Search in Google Scholar

48. Ding B, Ling HW, Chen KM, Jiang H, Zhu YB. Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging. Neuroradiol 2006; 48: 773-81. 10.1007/s00234-006-0120-116937146Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo