1. bookVolume 132 (2022): Issue 1 (January 2022)
Journal Details
License
Format
Journal
eISSN
2083-4829
First Published
23 Apr 2014
Publication timeframe
1 time per year
Languages
English
access type Open Access

Gut microbiome in non-alcoholic fatty liver disease

Published Online: 20 Jul 2022
Volume & Issue: Volume 132 (2022) - Issue 1 (January 2022)
Page range: 11 - 15
Journal Details
License
Format
Journal
eISSN
2083-4829
First Published
23 Apr 2014
Publication timeframe
1 time per year
Languages
English
Abstract

The human gut microbiome is composed of communities of bacteria, viruses and fungi. Bacteria live in each part of digestive tract, increasing their density and changing composition in distal parts. The composition of gut microbiome mainly depends on method of childbirth, age, gender, diet, stress, infections, alcohol intake, diurnal variation, smoking, drugs (antibiotics), physical activity. Dysbiosis is defined as an imbalance or maladaptation in the gut microbial community. This imbalance favors many pathological states and it could be due to some diseases. Non-alcoholic fatty liver disease (NAFLD) has become increasingly common in parallel with the increasing prevalence of obesity and other components of the metabolic syndrome. In year 2020, a more comprehensive new definition of NAFLD was proposed – fatty liver disease associated with metabolic dysfunction (MAFLD). NAFLD/MALFD will become the major form of chronic liver disease in adults and children and could become the leading indication for liver transplantation within a decade. An increased level of Bacteroidetes and decreased level of Firmicutes is observed in fatty liver disease. This imbalance favors the collection of energy and insulin resistance. The prevention and treatment of dysbiosis in NAFLD/MAFLD is essential.

The purpose of this review is an understanding related to the dysbiosis and non-alcoholic fatty liver disease in order to help physicians of different specialties in their clinical practice because of growing in population patients with metabolic syndrome and liver steatosis.

Keywords

1. Flint HJ. The impact of nutrition on the human microbiome. Nutr Rev. 2012;70(1):10-13.10.1111/j.1753-4887.2012.00499.x22861801 Search in Google Scholar

2. Grice EA, Segre JA. The human microbiome: „Our second genome”. Annu Rev Genomics Hum Genet. 2012;13:151-70.10.1146/annurev-genom-090711-163814351843422703178 Search in Google Scholar

3. Dominguez-Bello MG, Costello E, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS. 2010;107(26):11971-5.10.1073/pnas.1002601107290069320566857 Search in Google Scholar

4. Zhu X, Han Y, Du J, et al. Microbiota-gut-brain axis and the central nervous system. Oncotarget. 2017;8(32):53829-38.10.18632/oncotarget.17754558115328881854 Search in Google Scholar

5. Neuschwander-Tetri BA. Non-alcoholic fatty liver disease. BMC Med. 2017;15:45.10.1186/s12916-017-0806-8533014628241825 Search in Google Scholar

6. Eslam M, Newsome PN, Sarin SK, et al. A new definitione for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73:202-9.10.1016/j.jhep.2020.03.03932278004 Search in Google Scholar

7. Found Y, Waked I, Bollipo S, et al. What’s in a name? Renaming NAFLD to MAFLD. Liver Int. 2020;40:1254-61.10.1111/liv.1447832301554 Search in Google Scholar

8. Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49(6):1877-87.10.1002/hep.2284819291785 Search in Google Scholar

9. Day CP. Non-alcoholic steatohepatitis (NASH): where are we now and where are we going? Gut. 2002;50(5):585-8.10.1136/gut.50.5.585177319311950797 Search in Google Scholar

10. Zuwala-Jagiello J, Pazgan-Simon M, Simon K, et al. Serum endocan level in diabetes mellitus of patients with cirrhosis and risk of subsequent development of spontaneous bacterial peritonitis. J Physiol Pharmacol. 2019;70(3):399-405. Search in Google Scholar

11. Yan-Lan F, Hong C, Chun-Lin W, Li L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”. World J Gastroenterol. 2018;24(27):2974-83.10.3748/wjg.v24.i27.2974605495030038464 Search in Google Scholar

12. Rosso N, Chavez-Tapia NC, Tiribelli C, Bellentani S. Translational approaches: From fatty liver to non-alcoholic steatohepatitis. World J Gastroenterol. 2014;20(27):9038-49. Search in Google Scholar

13. Carr RM, Oranu A, Khungar V. Nonalcoholic fatty liver disease: Pathophysiology and Management. Gastroenterol Clin North Am. 2016;45(4):639-52.10.1016/j.gtc.2016.07.003512727727837778 Search in Google Scholar

14. Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev. 2017;49(2):197-211.10.1080/03602532.2017.1293683557615228303724 Search in Google Scholar

15. Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461-5.10.1038/ng.257259705618820647 Search in Google Scholar

16. Wawrzynowicz-Syczewska M, Waszczyk A, Bander D, et al. PNPLA3 gene polymorphism and severity of liver steatosis and fibrosis. Arch Med Scie Civil Dis. 2021;6:31-5.10.5114/amscd.2021.105522 Search in Google Scholar

17. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70(6):1. Search in Google Scholar

18. Papandreou D, Andreou E. Role of diet on non-alcoholic fatty liver disease: An updated narrative review. World J Hepatol. 2015;7(3):575-82.10.4254/wjh.v7.i3.575438118025848481 Search in Google Scholar

19. Gottlieb A, Canbay A. Why bile acids are so important in non-alcoholic fatty liver disease (NAFLD) progression. Cells. 2019;8(11):1358.10.3390/cells8111358691260531671697 Search in Google Scholar

20. Olsen I, Yamazaki K. Can oral bacteria affect the microbiome of the gut? Sci Rep. 2015;5:8096. Search in Google Scholar

21. Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. Peer J. 2019;7:7502.10.7717/peerj.7502669948031440436 Search in Google Scholar

22. Redondo-Useros N, Nova E, González-Zancada N, Diaz LE, Gómez-Martinez S, Marcos A. Microbiota and lifestyle: A special focus on diet. Nutrients. 2020;12(6):1776.10.3390/nu12061776735345932549225 Search in Google Scholar

23. Magne F, Gotteland M, Gauthier L, et al. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12(5):1474.10.3390/nu12051474728521832438689 Search in Google Scholar

24. Konturek PC, Harsch IA, Konturek K, et al. Gut-liver axis: How do gut bacteria influence the liver? Med Sci (Basel). 2018;6(3):79.10.3390/medsci6030079616538630227645 Search in Google Scholar

25. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regu-lates fat storage. Proc Natl Acad Sci USA. 2004;101:15718-23.10.1073/pnas.040707610152421915505215 Search in Google Scholar

26. Backhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA. 2007;104:979-84.10.1073/pnas.0605374104176476217210919 Search in Google Scholar

27. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;21(7122): 1027-31.10.1038/nature0541417183312 Search in Google Scholar

28. Le Roy T, Llopis M, Lepage P, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut. 2013;62:1787-94.10.1136/gutjnl-2012-30381623197411 Search in Google Scholar

29. Wang B, Jiang X, Cao M, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. sci rep. 2016;6:32002.10.1038/srep32002499408927550547 Search in Google Scholar

30. Michail S, Lin M, Frey MR, et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol Ecol. 2015; 91(2):1-9.10.1093/femsec/fiu002435874925764541 Search in Google Scholar

31. Zhu L, Baker SS, Gill C, et al. Characterisation of gut microbiomes in non-alcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57(2):601-9.10.1002/hep.2609323055155 Search in Google Scholar

32. Boursier J, Mueller O, Barret M, et al. The severity of non-alcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63(3):764-75.10.1002/hep.28356497593526600078 Search in Google Scholar

33. Xu R, Tao A, Zhang S, et al. Association between vitamin E and non-alcoholic steatohepatitis: a meta-analysis. Int J Clin Exp Med. 2015;8:3924-34. Search in Google Scholar

34. Ratziu V, de Ledinghen V, Oberti F, et al. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J Hepatol. 2011;54:1011-9.10.1016/j.jhep.2010.08.03021145828 Search in Google Scholar

35. Szulińska M, Loniewski I, van Hemert S, et al. Dose-dependent effects of multispecies probiotic supplementation on the Lipopolysaccharide (LPS) level and cardiometabolic profile in obese postmenopausal women: A 12-week randomized clinical trial. Nutrients. 2018;15:10.10.3390/nu10060773602479429914095 Search in Google Scholar

36. Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37(2):343-50.10.1053/jhep.2003.5004812540784 Search in Google Scholar

37. Seliverstov PS, Stanislav V, Radchenko LB, et al. Saccharomyces boulardii modulates the composition of the gut microbiota in patients with non-alcoholic fatty liver disease, thus preventing the progression of the disease. Eksp Klin Gastroenterol. 2018;4:4-18. Search in Google Scholar

38. Nabavi S, Rafraf M, Somi MH, et al. Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease. J Dairy Sci. 2014;97(12):7386-7393.10.3168/jds.2014-850025306266 Search in Google Scholar

39. Wegh CA, Geerlings SY, Knol J, et al. Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci. 2019;20(19):4673.10.3390/ijms20194673680192131547172 Search in Google Scholar

40. Żółkiewicz J, Marzec A, Ruszczyński M, Feleszko W. Postbiotics-A step beyond pre- and probiotics. Nutrients. 2020;12(8):2189.10.3390/nu12082189746881532717965 Search in Google Scholar

41. Rose S, Nyiazov DM, Rossignol DA, et al. Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder. Mol Diagn Ther. 2018;22(5):571-93.10.1007/s40291-018-0352-x613244630039193 Search in Google Scholar

42. Fuentes M, Lajo T, Carrión J, Cuñé J. Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. BJN. 2013;109(10):1866-72.10.1017/S000711451200373X23017585 Search in Google Scholar

43. Abdel-Razik A, Mousa N, Shabana W, et al. Rifaximin in nonalcoholic fatty liver disease: hit multiple targets with a single shot. Eur J Gastroenterol Hepatol. 2018;30(10):1237-46.10.1097/MEG.000000000000123230096092 Search in Google Scholar

44. Wijarnpreecha K, Lou S, Watthanasuntorn K, et al. Small intestinal bacterial overgrowth and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2020;32(5):601-8.10.1097/MEG.000000000000154131567712 Search in Google Scholar

45. Kuang L, Zhou W, Jiang Y. Association of small intestinal bacterial over-growth with nonalcoholic fatty liver disease in children: A meta-analysis. PLoS One. 2021;16(12):0260479.10.1371/journal.pone.0260479863885734855819 Search in Google Scholar

46. Okubo H, Nakatsu Y, Sakoda H, et al. Mosapride citrate improves nonalcoholic steatohepatitis with increased fecal lactic acid bacteria and plasma glucagon-like peptide-1 level in a rodent model. Am J Physiol Gastrointest Liver Physiol. 2015;308:151-8.10.1152/ajpgi.00198.201425428903 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo