1. bookVolume 23 (2021): Issue 2 (June 2021)
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Commercial Kevlar derived activated carbons for CO2 and C2H4 sorption

Published Online: 15 Jul 2021
Page range: 81 - 87
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Abstract

The carbonaceous precursor was obtained via pyrolysis of commercial aramid polymer (Kevlar). Additionally the precursor was activated at 1000°C in CO2 atmosphere for different times. Obtained materials were characterised by BET; XPS; SEM and optical microscopy. The sorption capacities were determined by temperature swing adsorption performed in TGA apparatus for CO2 and C2H4 gases. The obtained materials exhibit high difference in sorption of these gases i.e. 1.5 and 2.8 mmol/g @30°C respectively and high SSA ~1600 m2/g what can be applied in separation applications. The highest uptakes were 1.8 and 3.1 mmol/g @30°C respectively. It was found that the presence of oxygen and nitrogen functional groups enhances C2H4/CO2 uptake ratio.

Keywords

1. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A.W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. J. CO2 Util. 5, 47–52. DOI: 10.1016/j.jcou.2013.12.004.Open DOISearch in Google Scholar

2. Francke, R., Schille, B. & Roemelt, M. (2018). Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts. Chem. Rev. 118 4631–4701.Search in Google Scholar

3. Xie, C., Chen, C., Yu, Y., Su, J., Li, Y., Somorjai, G.A. & Yang, P. (2017). Tandem catalysis for CO2 hydrogenation to C2–C4 hydrocarbons. Nano Lett. 17, 3798–3802.Search in Google Scholar

4. Mozia, S., Darowna, D., Wróbel, R. & Morawski, A.W (2015). A study on the stability of polyethersulfone ultrafiltration membranes in a photocatalytic reactor. J. Membr. Sci. 495 176–186. DOI: 10.1016/j.memsci.2015.08.024.Open DOISearch in Google Scholar

5. Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S., Galindo, A. & Hackett, L.A. (2018). Carbon capture and storage. (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176.Search in Google Scholar

6. Kapica-Kozar, J., Pirog, E., Wróbel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Microporous Mesoporous Mater. 231, 117–127. DOI: 10.1016/j.micromeso.2016.05.024.Open DOISearch in Google Scholar

7. Lendzion-Bielun, Z., Czekajlo, L., Sibera, D., Moszynski, D., Sreńscek-Nazzal, J., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B., Arabczyk, W. & Narkiewicz, U. (2018). Surface characteristics of KOH-treated commercial carbons applied for CO2 adsorption. Adsorp. Sci. Technol. 36, 478–492. DOI: 10.1177/0263617417704527.Open DOISearch in Google Scholar

8. Glonek, K., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta Phys. Pol. A 129, 158–161. DOI: 10.12693/APhysPolA.129.158.Open DOISearch in Google Scholar

9. Sibera, D., Narkiewicz, U., Kapica, J., Serafin, J., Michalkiewicz, B., Wróbel, R.J. & Morawski, A.W. (2019). Preparation and characterisation of carbon spheres for carbon dioxide capture. J. Porous Mater. 26, 19–27. DOI: 10.1007/s10934-018-0601-8.Open DOISearch in Google Scholar

10. Kapica-Kozar, J., Michalkiewicz, B., Wróbel, R.J., Mozia, S., Pirog, E., Kusiak-Nejman, E., Serafin, J., Morawski, A.W. & Narkiewicz, U. (2017). Adsorption of carbon dioxide on TEPA-modified TiO2/titanate composite nanorods. New. J. Chem. 41, 7870–7885. DOI: 10.1039/c7nj01549f.Open DOISearch in Google Scholar

11. Zgrzebnicki, M., Krauze, N., Gęsikiewicz-Puchalska, A., Kapica-Kozar, J., Pirog, E., Jedrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wróbel, R.J. (2017). Impact on CO2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater. 2017. DOI: 10.1155/2017/7359591.Open DOISearch in Google Scholar

12. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73–79. DOI: 10.1016/j.jcou.2017.01.006.Open DOISearch in Google Scholar

13. Sreńscek-Nazzal, J. & Kielbasa, K. (2019). Advances in modification of commercial activated carbon for enhancement of CO2 capture. Appl. Surf. Sci. 494, 37–151. DOI: 10.1016/j.apsusc.2019.07.108.Open DOISearch in Google Scholar

14. Sreńscek-Nazzal, J. & Kielbasa, K. (2020). Microporous carbon foams for CO2 adsorption obtained from carbon nano-spheres. Przem. Chem. 99(1), 70–73. DOI: 10.15199/62.2020.1.7.Open DOISearch in Google Scholar

15. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data 60, 3148–3158. DOI: 10.1021/acs.jced.5b00294.Open DOISearch in Google Scholar

16. Serafin, J., Baca, Martyna., Biegun, M., Mijowska, E., Kalenczuk, R.J., Sreńscek-Nazzar, J. & Michalkiewicz, B. (2019). Direct conversion of biomass to nanoporous activated biocarbons for high CO2 adsorption and supercapacitor applications. Appl. Surf. Sci. 497. DOI: 10.1016/j.apsusc.2019.143722.Open DOISearch in Google Scholar

17. Kapica-Kozar, J., Pirog, E., Kusiak-Nejman, E., Wróbel, R.J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New. J. Chem. 41, 1549–1557. DOI: 10.1039/c6nj02808j.Open DOISearch in Google Scholar

18. Gęsikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wróbel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.Open DOISearch in Google Scholar

19. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R., Gęsikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of Commercial Activated Carbons for CO2 Adsorption. Acta Phys. Pol. A 129, 394-401. DOI: 10.12693/APhysPolA.129.394.Open DOISearch in Google Scholar

20. Li, J., Michalkiewicz, B., Min, J., Ma, C., Chen, X., Gong, J., Mijowska, E. & Tang, T. (2019). Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture. Chem. Eng. J. 360, 250–259. DOI: 10.1016/j.cej.2018.11.204.Open DOISearch in Google Scholar

21. Kukulka, W., Cendrowski, K., Michalkiewicz, B. & Mijowska, E. (2019). MOF-5 derived carbon as material for CO2 adsorption. RSC Adv. 9, 34349–34349. DOI: 10.1039/c9ra90077b.Open DOISearch in Google Scholar

22. Shi, X., Gong, J., Kierzek, K., Michalkiewicz, B., Zhang, S., Chu, P.K., Chen, X., Tang, T. & Mijowska, E. (2019). Multifunctional nitrogen-doped nanoporous carbons derived from metal-organic frameworks for efficient CO2 storage and high-performance lithium-ion batteries. New. J. Chem. 43, 10405–10412. DOI: 10.1039/c9nj01542f.Open DOISearch in Google Scholar

23. Zgrzebnicki, M., Michalczyszyn, E. & Wrobel, R.J. (2018). Improving the Carbon Dioxide Uptake Efficiency of activated Carbons Using a Secondary Activation With Potassium Hydroxide, Pol. J. Chem. Technol., 20(3), 87–94. DOI: 10.2478/pjct-2018-0043.Open DOISearch in Google Scholar

24. Michalkiewicz, B., Sreńscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.Open DOISearch in Google Scholar

25. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal. A 307, 270–274. DOI: 10.1016/j.apcata.2006.04.006.Open DOISearch in Google Scholar

26. Michalkiewicz, B. (2003). Methane conversion to methanol in condensed phase. Kinet. Catal. 44, 801–805. DOI: 10.1023/B:KICA.0000009057.79026.0b.Open DOISearch in Google Scholar

27. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63, 105–110. DOI: 10.2478/s11696-008-0100-5.Open DOISearch in Google Scholar

28. Michalkiewicz, B. (2008). Assessment of the possibility of the methane to methanol transformation. Pol. J. Chem. Technol. 10, 20–26. DOI: 10.2478/v10026-008-0023-5.Open DOISearch in Google Scholar

29. Michalkiewicz, B., Sreńscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.Open DOISearch in Google Scholar

30. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal. A 277, 147–153. DOI: 10.1016/j.apcata.2004.09.005.Open DOISearch in Google Scholar

31. Michalkiewicz, B. (2003). Partial oxidation of methane to oxygenates. Przem. Chem. 82, 627–628.Search in Google Scholar

32. Michalkiewicz, B., Kalucki, K. & Sosnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.Open DOISearch in Google Scholar

33. Michalkiewicz, B., Jarosinska, M. & Lukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161. DOI: 10.1016/j.cej.2009.03.046.Open DOISearch in Google Scholar

34. Jarosinska, M., Lubkowski, K., Sosnicki, J.G. & Michalkiewicz, B. (2008). Application of Halogens as Catalysts of CH(4) Esterification. Catal. Lett. 126, 407–412. DOI: 10.1007/s10562-008-9645-8.Open DOISearch in Google Scholar

35. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A. 394, 266–268. DOI: 10.1016/j.apcata.2011.01.014.Open DOISearch in Google Scholar

36. Majewska, J. & Michalkiewicz, B. (2016). Production of hydrogen and carbon nanomaterials from methane using Co/ZSM-5 catalyst. Int. J. Hydrog. Energy 41, 8668–8678. DOI: 10.1016/j.ijhydene.2016.01.097.Open DOISearch in Google Scholar

37. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. New Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.Open DOISearch in Google Scholar

38. Ziebro, J., Łukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloys Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.Open DOISearch in Google Scholar

39. Ziebro, J., Lukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21. DOI: 10.1088/0957-4484/21/14/145308.Open DOISearch in Google Scholar

40. Michalkiewicz, B. & Majewska, J. (2014). Diameter-controlled carbon nanotubes and hydrogen production. Int. J. Hydrog. Energy 39, 4691–4697. DOI: 10.1016/j.ijhydene.2013.10.149.Open DOISearch in Google Scholar

41. Sreńscek-Nazzal, J., Kamińska, Weronika., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sug-arcane molasses. Ind. Crops Prod. 47, 153–159. DOI: 10.1016/j.indcrop.2013.03.004.Open DOISearch in Google Scholar

42. Keller, N., Ducamp, M., Robert, D., Keller, V. (2013) Ethylene Removal and Fresh Product Storage: A Challenge at the Frontiers of Chemistry. Toward an Approach by Photocatalytic Oxidation, Chem. Rev. 113(7), 5029–5070. DOI: 10.1021/cr900398v.Open DOISearch in Google Scholar

43. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity. Energy 75, 549–554. DOI: 10.1016/j.energy.2014.08.016.Open DOISearch in Google Scholar

44. Wenelska, K., Michalkiewicz, B., Gong, Jiang., Tang, T., Kaleńczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Hydrog. Energy 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.Open DOISearch in Google Scholar

45. Baca, M., Cendrowski, K., Banach, P., Michalkiewicz, B., Mijowska, E., Kaleńczuk, R.J. & Zielińska, B. (2017). Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres. Int. J. Hydrog. Energy 42, 30461–30469. DOI: 10.1016/j.ijhydene.2017.10.146.Open DOISearch in Google Scholar

46. Kukulka, W., Cendrowski, K., Michalkiewicz, B. & Mijowska, E. (2019). MOF-5 derived carbon as material for CO2 absorption. RSC Adv. 9, 18527–18537. DOI: 10.1039/c9ra01786k.Open DOISearch in Google Scholar

47. Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, Xin. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ACS Sustain. Chem. Eng. 2, 2837–2844. DOI: 10.1021/sc500603h.Open DOISearch in Google Scholar

48. Zielińska, B., Michalkiewicz, B., Chen, X., Mijowska, E. & Kaleńczuk, R.J. (2016). Pd supported ordered mesoporous hollow carbon spheres. (OMHCS) for hydrogen storage. Chem. Phys. Lett. 647, 14–19. DOI: 10.1016/j.cplett.2016.01.036.Open DOISearch in Google Scholar

49. Baca, M.., Cendrowski, K., Kukulka, W., Bazarko, G., Moszynski, D., Michalkiewicz, B., Kalenczuk, R.J. & Zielińska, B. (2018). A Comparison of Hydrogen Storage in Pt, Pd and Pt/Pd Alloys Loaded Disordered Mesoporous Hollow Carbon Spheres. Nanomaterials 8. DOI: 10.3390/nano8090639.Open DOISearch in Google Scholar

50. Zielińska, B., Michalkiewicz, B., Mijowska, E. & Kalenczuk, R.J. (2015). Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application. Nanoscale Research Letters 10. DOI: 10.1186/s11671-015-1113-y.Open DOISearch in Google Scholar

51. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j.cattod.2015.11.010.Open DOISearch in Google Scholar

52. Glonek, K., Wróblewska, A., Makuch, E., Ulejczyk, B., Krawczyk, K., Wróbel, Rafal. J., Koren, Z.C. & Michalkiewicz, B. (2017). Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma. Appl. Surf. Sci. 420, 873–881. DOI: 10.1016/j.apsusc.2017.05.136.Open DOISearch in Google Scholar

53. Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkiewicz, B. & Pattek-Janczyk, A. (2007). Passivation and oxidation of an ammonia iron catalyst. Appl. Catal. A, 329, 137–147. DOI: 10.1016/j.apcata.2007.07.006.Open DOISearch in Google Scholar

54. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2017). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. 6, 397–401. DOI: 10.1515/gps-2016-0148.Open DOISearch in Google Scholar

56. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z.C. & Michalkiewicz, B. (2017). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. 147, 150–160. DOI: 10.1007/s10562-016-1910-7.Open DOISearch in Google Scholar

57. Wróblewska, A., Serafin, J., Gawarecka, A., Miadlicki, P., Urbas, K., Koren, Z.C., Llorca, J. & Michalkiewicz, B. (2020). Carbonaceous catalysts from orange pulp for limonene oxidation. Carbon Letters 30, 189–198. DOI: 10.1007/s42823-019-00084-2.Open DOISearch in Google Scholar

58. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z.C. & Michalkiewicz, B. (2018). Oxidation of limonene over molybdenum dioxide-containing nanoporous carbon catalysts as a simple effective method for the utilization of waste orange peels. React. Kinet. Mech. Catal. 125, 843–858. DOI: 10.1007/s11144-018-1468-z.Open DOISearch in Google Scholar

59. Kwiatkowski, M., Sreńscek-Nazzal, J. & Michalkiewicz, B. (2017). An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12. Adsorption 23, 551–61. DOI: 10.1007/s10450-017-9867-4.Open DOISearch in Google Scholar

60. Kielbasa, K., Maciejewska, N., Kaminska, A. & Sreń-scek-Nazzal, J. (2020). Porous carbon materials obtained from molasses carbon spheres. Przem. Chem. 99(11), 1636–1639. DOI: 10.15199/62.2020.11.9.Open DOISearch in Google Scholar

61. Zhao, X., Hirogaki, K., Tabata, I., Okubayashi, S. & Hori. T. (2006). A new method of producing conductive aramid fibers using supercritical carbon dioxide. Surf. Coat. Technol. 201(3–4) 628–636. DOI: 10.1016/j.surfcoat.2005.12.021.Open DOISearch in Google Scholar

62. Prasad,V.V. & Talupula, S. (2018). A Review on Reiforcement of Basalt and Aramid (Kevlar 129) fibers. Mater. Today 5(2), 5993–5998. DOI: 10.1016/j.matpr.2017.12.202.Open DOISearch in Google Scholar

63. Sutanu, S. & Singh, T.J. (2015). Characterisation of Kevlar Fiber and Its Composites: A Review. Mater. Today 2(4–5), 1381–1387. DOI: 10.1016/j.matpr.2015.07.057.Open DOISearch in Google Scholar

64. Qin, J., Guo, B., Zhang, L., Wang, T., Zhang, G. & Shi, X. (2020). Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid. Compos. B. Eng. 183, 107686. DOI: 10.1016/j.compositesb.2019.107686.Open DOISearch in Google Scholar

65. Venkataraman, M., Xiong, X., Novotna, J., Kasparova, M., Mishra, R. & Militky, J. (2019) Thermal Protective Properties of Aerogel-coated Kevlar Woven Fabrics, J. Fib. Bioeng. Inform.12, 93–101. DOI: 10.3993/jfbim00321.Open DOISearch in Google Scholar

66. Balaji, R., Nadarajana, M., Selokara, A., Kumara, S. & Sivakumar S. (2019). Modelling and analysis of Disk Brake under Tribological behaviour of Al-Al2O3 Ceramic Matrix Composites/Kevlar® 119 composite/C/Sic-Carbon Matrix Composite/Cr-Ni-Mo-V steel. Mater. Today 18, 3415–3427.Search in Google Scholar

67. https://www.dupont.com/brands/kevlar.html; access time 2021.06.08.Search in Google Scholar

68. Castro-Muniz, A., Martınez-Alonso, A. & Tascon, J.M.D. (2008). Microporosity and mesoporosity of PPTA-derived carbons. Effect of PPTA thermal pretreatment, Microporous and Mesoporous Mater. 114, 185–192. DOI: 10.1016/j.micromeso.2008.01.003.Open DOISearch in Google Scholar

69. Conte, G., Stelitano, S., Policicchio, A., Minuto, F.D., Lazzaroli, V., Galiano, F. & Agostino, R.G. (2020). Assessment of activated carbon fibers from commercial Kevlar® as nanostructured material for gas storage: Effect of activation procedure and adsorption of CO2 and CH4. J. Anal. Appl. Pyrolysis 152, 104974. DOI: 10.1016/j.jaap.2020.104974.Open DOISearch in Google Scholar

70. Zhang, Z., Yang, S., Zhang, P., Zhang, J., Chen, G. & Feng, X. (2019). Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920. DOI: 10.1038/s41467-019-10885-8.Open DOISearch in Google Scholar

71. Suarez-Garcia, F., Martinez-Alonso, A. & Tascon, J.M.D. (2004). Nomex polyaramid as a precursor activated carbon fibers by phosphoric acid activation. Temperature and time effects. Microporous Mesoporous Mater. 75(1–2), 73–80. DOI: 10.1016/j.micromeso.2004.07.004.Open DOISearch in Google Scholar

72. Castro-Muniz, A., Martinez-Alonso, A. & Tascon, J.M.D. (2009). Effect of PPTA pre-impregnation with phosphoric acid on the porous materials texture of carbons materials prepared by CO2 activation of PPTA chars. Microporous Mesoporous Mater. 119(1–3), 284–289. DOI: 10.1016/j.micromeso.2008.10.025.Open DOISearch in Google Scholar

73. Choma, J., Osuchowski, Ł., Marszewski, M., Dziura, A. & Jaroniec, M. (2016). Developing microporosity in Kevlar1-derived carbon fibers by CO2 activation for CO2 adsorption. J. CO2 Util. 16, 17-22. DOI: 10.1016/j.jcou.2016.05.004 2212-9820.Open DOISearch in Google Scholar

74. Villar-Rodil, S., Navarrete, R., Denoyel, R., Albiniak, A., Paredes, J.I, Martinez-Alonso, A. & Tascon, J.M.D. (2005). Carbon molecular sieve cloths prepared by chemical vapour deposition of methane for separation of gas mixtures. Micro-porous Mesoporous Mater. 77(2–3), 109–118. DOI: 10.1016/j.micromeso.2004.08.017.Open DOISearch in Google Scholar

75. Villar-Rodil, S., Denoyel, R., Rouquerol, J. Martinez-Alonso, A. & Tascon, J.M.D. (2002). Characterization of aramid based activated carbon fibres by adsorption and immersion techniques. Carbon. 40(8), 1376–1380. DOI: 10.1016/S0008-6223(02)00114-8.Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo