1. bookVolume 22 (2022): Issue 3 (June 2022)
Journal Details
First Published
07 Mar 2008
Publication timeframe
6 times per year
access type Open Access

Review of Measurement Techniques of Hydrocarbon Flame Equivalence Ratio and Applications of Machine Learning

Published Online: 22 Apr 2022
Volume & Issue: Volume 22 (2022) - Issue 3 (June 2022)
Page range: 122 - 135
Received: 23 Dec 2021
Accepted: 28 Feb 2022
Journal Details
First Published
07 Mar 2008
Publication timeframe
6 times per year

Flame combustion diagnostics is a technique that uses different methods to diagnose the flame combustion process and study its physical and chemical basis. As one of the most important parameters of the combustion process, the flame equivalence ratio has a significant influence on the entire flame combustion, especially on the combustion efficiency and the emission of pollutants. Therefore, the measurement of the flame equivalence ratio has a huge impact on efficient combustion and environment protection. In view of this, several effective measuring methods were proposed, which were based on the different characteristics of flames radicals such as spectral properties. With the rapid growth of machine learning, more and more scholars applied it in the combustion diagnostics due to the excellent ability to fit parameters. This paper presents a review of various measuring techniques of hydrocarbon flame equivalent ratio and the applications of machine learning in combustion diagnostics, finally making a brief comparison between different measuring methods.


[1] Yang, X.F., Yu, M.G., Han, S.X., Qi, B.B. (2021). Effect of equivalence ratio and ignition location on premixed syngas-air explosion in a half-open duct. Fuel, 288 (2), 119724. https://doi.org/10.1016/j.fuel.2020.11972410.1016/j.fuel.2020.119724 Search in Google Scholar

[2] Garcıá-Armingol, T., Ballester, J. (2014). Flame chemiluminescence in premixed combustion of hydron-enriched fuels. International Journal of Hydrogen Energy, 39 (21), 11299-11307. https://doi.org/10.1016/j.ijhydene.2014.05.10910.1016/j.ijhydene.2014.05.109 Search in Google Scholar

[3] Yang, J.B., Gong, Y., Guo, Q., Zhu, H.W., Wang, F.C. Yu, G.S. (2020). Experimental studies of the effects of global equivalence ratio and CO 2 dilution level on the OH* and CH* chemiluminescence in CH 4 /O 2 diffusion flames. Fuel, 278, 118307. https://doi.org/10.1016/j.fuel.2020.11830710.1016/j.fuel.2020.118307 Search in Google Scholar

[4] Kojima, J., Ikeda, Y., Nakajima, T. (2004). Basic aspects of OH(A), CH(A), and C 2 (d) chemiluminescence in the reaction zone of laminar methane–air premixed flames. Combustion and Flame, 140 (1-2), 34-45. https://doi.org/10.1016/j.combustflame.2004.10.00210.1016/j.combustflame.2004.10.002 Search in Google Scholar

[5] Clark, T.P. (1958). Studies of oh, co, ch, and c (sub 2) radiation from laminar and turbulent propane-air and ethylene-air flames. Technical note 4266, National Advisory Committee for Aeronautics, Washington, DC. Search in Google Scholar

[6] Haber, L.C. (2000). An investigation into the origin, measurement and application of chemiluminescent light emissions from premixed flames. MS Thesis, Virginia Polytechnic Institute and State University, Blacksbury, VA. Search in Google Scholar

[7] Weber, J.R., Cuccia, D.J., Johnson, W.R., Bearman, G.H., Durkin, A.J., Hsu, M., Lin, A., Binder, D.K., Wilson, D., Tromberg, B.J. (2011). Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer. Journal of Biomedical Optics, 16 (1), 011015. https://doi.org/10.1117/1.352862810.1117/1.3528628305558821280902 Search in Google Scholar

[8] Fei, X., Yang, J.B., Wei, J.T., Wu, R.M., Song, X.D., Wang, J.F., Yu, G.S. (2021). Investigation of the OH* chemiluminescence characteristics in CH4/O2 lifted flames. Journal of the Energy Institute, 99, 31-38. https://doi.org/10.1016/j.joei.2021.08.00710.1016/j.joei.2021.08.007 Search in Google Scholar

[9] Navakas, R., Saliamonas, A., Striugas, N., Džiugys, A., Paulauskas, R., Zakarauskas, K. (2018). Effect of producer gas addition and air excess ratio on natural gas flame luminescence. Fuel, 217, 478-489. https://doi.org/10.1016/j.fuel.2017.12.09410.1016/j.fuel.2017.12.094 Search in Google Scholar

[10] Huang, H.W., Zhang, Y. (2008). Flame colour characterization in the visible and infrared spectrum using a digital camera and image processing. Measurement Science and Technology, 19 (8), 085406. http://dx.doi.org/10.1088/0957-0233/19/8/08540610.1088/0957-0233/19/8/085406 Search in Google Scholar

[11] Yang, J.S., Ma, Z., Zhang, Y. (2019). Improved colour-modelled CH * and C 2 * measurement using a digital colour camera. Measurement, 141, 235-240. https://doi.org/10.1016/j.measurement.2019.04.01610.1016/j.measurement.2019.04.016 Search in Google Scholar

[12] Tripathi, M.M., Krishnan, S.R., Srinivasan, K.K., Yueh, F.Y., Singh, J.P. (2012). Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane–air flames. Fuel, 93, 684-691. https://doi.org/10.1016/j.fuel.2011.08.03810.1016/j.fuel.2011.08.038 Search in Google Scholar

[13] Brockhinke, A., Krüger, J., Heusing, M., Letzgus, M. (2012). Measurement and simulation of rotationally-resolved chemiluminescence spectra in flames. Applied Physics B, 107 (3), 539-549. https://doi.org/10.1007/s00340-012-5001-110.1007/s00340-012-5001-1 Search in Google Scholar

[14] Vogel, M., Bachfischer, M., Kaufmann, J., Sattelmayer, T. (2021). Experimental investigation of equivalence ratio fluctuations in a lean premixed kerosene combustor. Experiments in Fluids, 62, 93. https://doi.org/10.1007/s00348-021-03197-510.1007/s00348-021-03197-5 Search in Google Scholar

[15] Bedard, M.J., Fuller, T.L., Sardeshmukh, S., Anderson, W.E. (2020). Chemiluminescence as a diagnostic in studying combustion instability in a practical combustor. Combustion and Flame, 213, 211-225. https://doi.org/10.1016/j.combustflame.2019.11.03910.1016/j.combustflame.2019.11.039 Search in Google Scholar

[16] Baumgardner, M.E., Harvey, J. (2020). Analyzing OH*, CH*, and C2* chemiluminescence of bifurcating FREI propane-air flames in a micro flow reactor. Combustion and Flame, 221, 349-351. https://doi.org/10.1016/j.combustflame.2020.08.00910.1016/j.combustflame.2020.08.009 Search in Google Scholar

[17] Song, X., Guo, Q., Hu, C., Gong, Y. Yu, G. (2016). OH* chemiluminescence characteristics and structures of the impinging reaction region in opposed impinging diffusion flames. Energy Fuels, 30 (2), 1428-1436. https://doi.org/10.1021/acs.energyfuels.5b0272110.1021/acs.energyfuels.5b02721 Search in Google Scholar

[18] He, L., Guo, Q.H., Gong, Y. Wang, F.C. Yu, G.S. (2019). Investigation of OH* chemiluminescence and heat release in laminar methane–oxygen co-flow diffusion flames. Combustion and Flame, 201, 12-22. https://doi.org/10.1016/j.combustflame.2018.12.00910.1016/j.combustflame.2018.12.009 Search in Google Scholar

[19] Cho, Y.T., Na, S.J. (2005). Application of Abel inversion in real-time calculations for circularly and elliptically symmetric radiation sources. Measurement Science and Technology, 16, 878-884. https://doi.org/10.1088/0957-0233/16/3/03210.1088/0957-0233/16/3/032 Search in Google Scholar

[20] Huang, H.W., Zhang, Y. (2010). Digital colour image processing based measurement of premixed CH 4 +air and C 2 H 4 +air flame chemiluminescence. Fuel, 90 (1), 48-53. https://doi.org/10.1016/j.fuel.2010.07.05010.1016/j.fuel.2010.07.050 Search in Google Scholar

[21] Huang, H.W., Zhang, Y. (2010). Dynamic application of digital image and colour processing in characterizing flame radiation features. Measurement Science and Technology, 21 (8), 085202. http://dx.doi.org/10.1088/0957-0233/21/8/08520210.1088/0957-0233/21/8/085202 Search in Google Scholar

[22] Huang, H.W., Zhang, Y. (2011). Analysis of the ignition process using a digital image and colour processing technique. Measurement Science and Technology, 22 (7), 075401. http://dx.doi.org/10.1088/0957-0233/22/7/07540110.1088/0957-0233/22/7/075401 Search in Google Scholar

[23] Yang, J., Mossa, F.M.S., Huang, H.W., Wang, Q., Wolley, R., Zhang, Y. (2015). Oscillating flames in open tubes. Proceedings of the Combustion Institute, 35 (2), 2075. https://doi.org/10.1016/j.proci.2014.07.05210.1016/j.proci.2014.07.052 Search in Google Scholar

[24] Lubrano, L.M., Brackmann, C., Capriolo, G., Methling, T., Konnov, A.A. (2021). Measurements of the laminar burning velocities and NO concentrations in neat and blended ethanol and n-heptane flames. Fuel, 288, 119585. https://doi.org/10.1016/j.fuel.2020.11958510.1016/j.fuel.2020.119585 Search in Google Scholar

[25] Soid, S.N., Zainal, Z.A. (2011). Spray and combustion characterization for internal combustion engines using optical measuring techniques – a review. Energy, 36, 724-741. https://doi.org/10.1016/j.energy.2010.11.02210.1016/j.energy.2010.11.022 Search in Google Scholar

[26] Tripathi, M.M., Srinivasan, K.K., Krishnan, S.R., Yueh, F.Y., Singh, J.P. (2013). A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane-air flames. Fuel, 106, 318-316. https://doi.org/10.1016/j.fuel.2012.10.07910.1016/j.fuel.2012.10.079 Search in Google Scholar

[27] Meier, W., Keck, O. (2002). Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths. Measurement Science and Technology, 13 (5), 741-749. http://dx.doi.org/10.1088/0957-0233/13/5/31210.1088/0957-0233/13/5/312 Search in Google Scholar

[28] He, Y.X., Zhou, W.Q., Ke, C., Xu, T., Zhao, Y. (2021). Review of laser-induced breakdown spectroscopy in gas detection. Spectroscopy and Spectral Analysis, 41 (09), 2681-2687. DOI: 10.3964/j.issn.1000-0593(2021) 09-2681-07. Search in Google Scholar

[29] Protopopov, V. (2014). Practical Opto-Electronics. Springer, ISBN 978-3319045122.10.1007/978-3-319-04513-9 Search in Google Scholar

[30] Michalakou, A., Stavropoulos, P., Couris, S. (2008). Laser-induced breakdown spectroscopy in reactive flows of hydrocarbon-air mixtures. Applied Physics Letters, 92 (8), 081501. https://doi.org/10.1063/1.283937810.1063/1.2839378 Search in Google Scholar

[31] Badawy, T., Hamza, M., Mansour, M.S., Adbel-Hafez, A.H.H., Imam, H., Adbel-Raheem, M.A., Wang, C.M., Lattimore, T. (2019). Lean partially premixed turbulent flame equivalence ratio measurements using laser-induced breakdown spectroscopy. Fuel, 237, 320-334. https://doi.org/10.1016/j.fuel.2018.10.01510.1016/j.fuel.2018.10.015 Search in Google Scholar

[32] Zhu, J.J., Wang, M.G., Wu, G., Yan, B., Tian, Y.F., Feng, R., Sun, M.B. (2021). Research progress of laser-induced fluorescence technology in combustion. Chinese Journal of Lasers, 48 (4), 78-110. Search in Google Scholar

[33] Miao, J., Leung, C.W., Cheung, C.S., Huang, Z.H., Jin, W. (2016). Effect of H2 addition on OH distribution of LPG/Air circumferential inverse diffusion flame. International Journal of Hydrogen Energy, 41 (22), 9653. https://doi.org/10.1016/j.ijhydene.2016.02.10510.1016/j.ijhydene.2016.02.105 Search in Google Scholar

[34] Johchi, A., Pareja, J., Böhm, B., Dreizler, A. (2019). Quantitative mixture fraction imaging of a synthetic biogas turbulent jet propagating into a NO-vitiated air co-flow using planar laser-induced fluorescence (PLIF). Experiments in Fluids, 60, 82. https://doi.org/10.1007/s00348-019-2723-410.1007/s00348-019-2723-4 Search in Google Scholar

[35] Marrero-Santiago, J., Verdier, A., Brunet, C., Vandel, A., Godard, G., Cabot, G., Boukhalfa, M., Renou, B. (2018). Experimental study of aeronautical ignition in a swirled confined jet-spray burner. Journal of Engineering for Gas Turbines and Power, 140 (2), 021502. https://doi.org/10.1115/1.403775210.1115/1.4037752 Search in Google Scholar

[36] Balusamy, S., Cessou, A., Lecordier, B. (2014). Laminar propagation of lean premixed flames ignited in stratified mixture. Combustion and Flame, 161 (2), 427-437. https://doi.org/10.1016/j.combustflame.2013.08.02310.1016/j.combustflame.2013.08.023 Search in Google Scholar

[37] Peterson, B., Reuss, D.L., Sick, V. (2014). On the ignition and flame development in a spray-guided direct-injection spark-ignition engine. Combustion and Flame, 161 (1), 240-255. https://doi.org/10.1016/j.combustflame.2013.08.01910.1016/j.combustflame.2013.08.019 Search in Google Scholar

[38] Versailles, P., Watson, G.M.G., Lipardi, A.C.A., Bergthorson, J.M. (2016). Quantitative CH measurements in atmospheric-pressure, premixed flames of C1–C4 alkanes. Combustion and Flame, 165, 109-124. https://doi.org/10.1016/j.combustflame.2015.11.00110.1016/j.combustflame.2015.11.001 Search in Google Scholar

[39] Wehr, L. Meier, W. Kutne, P. Hassa, C. (2007). Single-pulse 1D laser Raman scattering applied in a gas turbine model combustor at elevated pressure. Proceedings of the Combustion Institute, 31 (2), 3099-3106. https://doi.org/10.1016/j.proci.2006.07.14810.1016/j.proci.2006.07.148 Search in Google Scholar

[40] Meier, W., Dem, C., Arndt, C.M. (2016). Mixing and reaction progress in a confined swirl flame undergoing thermo-acoustic oscillations studied with laser Raman scattering. Experimental Thermal and Fluid Science, 73, 71-78. https://doi.org/10.1016/j.expthermflusci.2015.09.01110.1016/j.expthermflusci.2015.09.011 Search in Google Scholar

[41] Vilsen, S.B., Stroe, D.-I. (2021). Battery state-of-health modelling by multiple linear regression. Journal of Cleaner Production, 290, 125700. https://doi.org/10.1016/j.jclepro.2020.12570010.1016/j.jclepro.2020.125700 Search in Google Scholar

[42] Ge, H., Li, X.L., Li, Y.J., Lu, G., Yan, Y. (2021). Biomass fuel identification using flame spectroscopy and tree model algorithms. Combustion Science and Technology, 193 (6), 1055-1072. https://doi.org/10.1080/00102202.2019.168065410.1080/00102202.2019.1680654 Search in Google Scholar

[43] Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 1, 81-106. https://doi.org/10.1007/BF0011625110.1007/BF00116251 Search in Google Scholar

[44] Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:101093340432410.1023/A:1010933404324 Search in Google Scholar

[45] Zhou, Z.Y., Ge, Y.F., Liu, Y.Z. (2021). Real-time monitoring of carbon concentration using laser-induced breakdown spectroscopy and machine learning. Optics Express, 29 (24), 39811-39823. https://doi.org/10.1364/OE.44373210.1364/OE.44373234809337 Search in Google Scholar

[46] Hangelbroek, T., Ron, A. (2010). Nonlinear approximation using Gaussian kernels. Journal of Functional Analysis, 259 (1), 203-219. https://doi.org/10.1016/j.jfa.2010.02.00110.1016/j.jfa.2010.02.001 Search in Google Scholar

[47] Shih, F.C., Mitchell, O.R. (1992). A mathematical morphology approach to Euclidean distance transformation. IEEE Transactions on Image Processing, 1 (2), 197-204. http://dx.doi.org/10.1109/83.13659610.1109/83.13659618296154 Search in Google Scholar

[48] Lee, J.W., McGann, B., Hammack, S.D., Carter, C., Lee, T.H., Do, H., Bak, M.S. (2021). Machine learning based quantification of fuel-air equivalence ratio and pressure from laser-induced plasma spectroscopy. Optics Express, 29 (12), 17902-17914. https://doi.org/10.1364/OE.42509610.1364/OE.42509634154062 Search in Google Scholar

[49] Wang, Y., Yu, Y.F., Zhu, X.L., Zhang, Z.X. (2020). Pattern recognition for measuring the flame stability of gas-fired combustion based on the image processing technology. Fuel, 270, 117486. https://doi.org/10.1016/j.fuel.2020.11748610.1016/j.fuel.2020.117486 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo