1. bookVolume 22 (2022): Issue 2 (April 2022)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Design and Testing of Wireless Motion Gauges for Two Collaborative Robot Arms

Published Online: 12 Mar 2022
Volume & Issue: Volume 22 (2022) - Issue 2 (April 2022)
Page range: 84 - 91
Received: 19 Nov 2021
Accepted: 10 Feb 2022
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

Most existing robot performance evaluation methods focus on single robotic arms performing independent motion tasks. In this paper, a motion gauge is proposed to evaluate the symmetrical coordinated-motion performance between two robotic arms. For this evaluation, the proposed device monitors the relative distance between the two robotic arms in real-time, which is used to evaluate the coordinated-motion errors with respect to accuracy, and repeatability between the two arms. The proposed metrology device is composed of two linear displacement sensors sliding on a linear rail, two ball-and-socket magnetic couplers for mounting to robotic arms, and a wireless communication module for data transmission. For validation, the proposed system monitored the two robotic arms programmed to simulate symmetrical coordinated motions.

Keywords

[1] Forlizzi, J., DiSalvo, C. (2006). Service robots in the domestic environment: A study of the Roomba vacuum in the home. In HRI ‘06: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction. New York, US: Association for Computing Machinery. https://doi.org/10.1145/1121241.112128610.1145/1121241.1121286 Search in Google Scholar

[2] Ritchie, M., Fioranelli, F., Griffiths, H. (2015). Microdrone RCS analysis. In IEEE Radar Conference. IEEE, DOI: 10.1109/RadarConf.2015.7411926.10.1109/RadarConf.2015.7411926 Search in Google Scholar

[3] Marvel, J.A., Norcross, R. (2017). Implementing speed and separation monitoring in collaborative robot workcells. Robotics and Computer - Integrated Manufacturing, 44, 144-155. https://doi.org/10.1016/j.rcim.2016.08.00110.1016/j.rcim.2016.08.001511764127885312 Search in Google Scholar

[4] Guiard, Y., Ferrand, T.T. (1996). Asymmetry in bimanual skills. In Manual Asymmetries in Motor Performance. CRC Press, ISBN 9780849389993. Search in Google Scholar

[5] Park, H.A., Lee, C.S.G. (2016). Dual-arm coordinated-motion task specification and performance evaluation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, DOI: 10.1109/IROS.2016.7759161.10.1109/IROS.2016.7759161 Search in Google Scholar

[6] Zollner, R., Asfour, T., Dillmann, R. (2004). Programming by demonstration: Dual-arm manipulation tasks for humanoid robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, DOI: 10.1109/IROS.2004.1389398.10.1109/IROS.2004.1389398 Search in Google Scholar

[7] Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D. (2012). Dual arm manipulation-A survey. Robotics and Autonomous Systems, 60 (10), 1340-1353. https://doi.org/10.1016/j.robot.2012.07.00510.1016/j.robot.2012.07.005 Search in Google Scholar

[8] Hutchinson, S., Hager, G.D., Corke, P.I. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12 (5), 651-670, DOI: 10.1109/70.538972.10.1109/70.538972 Search in Google Scholar

[9] Park, K.T., Park, C.H., Shin, Y.J. (2008). Performance evaluation of industrial dual-arm robot. In International Conference on Smart Manufacturing Application. IEEE, DOI: 10.1109/ICSMA.2008.4505596.10.1109/ICSMA.2008.4505596 Search in Google Scholar

[10] Nubiola, A., Bonev, I.A. (2013). Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing, 29 (1), 236-245. https://doi.org/10.1016/j.rcim.2012.06.00410.1016/j.rcim.2012.06.004 Search in Google Scholar

[11] Bryan, J. B. (1984). Telescoping magnetic ball bar test gage. US Patent 4435905A. https://patents.google.com/patent/US4435905A/en Search in Google Scholar

[12] Nubiola, A., Bonev, I.A. (2014). Absolute robot calibration with a single telescoping ballbar. Precision Engineering, 38 (3), 472-480. https://doi.org/10.1016/j.precisioneng.2014.01.00110.1016/j.precisioneng.2014.01.001 Search in Google Scholar

[13] Optitrack Trio:V120 motion tracking system. (2021). https://www.optitrack.com/cameras/v120-trio/ Search in Google Scholar

[14] Windolf, M., Gotzen, N., Morlock, M. (2008). Systematic accuracy and precision analysis of video motion capturing systems-exemplified on the Vicon-460 system. Journal of Biomechanics, 41, 2776-2780. https://doi.org/10.1016/j.jbiomech.2008.06.02410.1016/j.jbiomech.2008.06.02418672241 Search in Google Scholar

[15] Makerbot replicator 2 3D printer. (2021). https://www.makerbot.com/3d-printers/replicator-educators-edition/ Search in Google Scholar

[16] Weng, Z., Wang, J., Senthil, T., Wu, L. (2016). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials & Design, 102 (15), 276-283. https://doi.org/10.1016/j.matdes.2016.04.04510.1016/j.matdes.2016.04.045 Search in Google Scholar

[17] Slide potentiometer, PTB0143-2010BPB103, 10 kOhms 0.5 W. (2021). https://www.digikey.com/product-detail/en/PTB0143-2010BPB103/PTB0143-2010BPB103-ND/3534166 Search in Google Scholar

[18] Arduino board, Fio V3, ATmega32U4. (2021). https://www.sparkfun.com/products/11520 Search in Google Scholar

[19] Polymer Lithium-Ion Battery – 40 mAh. (2021). https://www.sparkfun.com/products/13852 Search in Google Scholar

[20] Material, stainless Steel 440C Threaded Balls, 0.5 inch diameter, hardened to Rc 58 min. (2020). http://precisionballs.com/solid_works/PDF/THREADED%20BALL.PDF Search in Google Scholar

[21] XBee 1 mW Wire Antenna – Series 1 (802.15.4). (2020). https://www.sparkfun.com/products/retired/8665 Search in Google Scholar

[22] Ju, Z., Yang, C., Ma, H. (2014). Kinematics modeling and experimental verification of Baxter robot. In Proceedings of the 33rd Chinese Control Conference. IEEE, DOI: 10.1109/ChiCC.2014.6896430.10.1109/ChiCC.2014.6896430 Search in Google Scholar

[23] Hardware specification of the Baxter robot. (2021). https://sdk.rethinkrobotics.com/wiki/Hardware_Specifications Search in Google Scholar

[24] Hardware specification of the Nikon laser radar system. MV-200 and MV-331-351. (2020). https://www.nikonmetrology.com/en-us/product/laser-radar-mv331-351 Search in Google Scholar

[25] McInroy, J.E. (2002). Modeling and design of flexure jointed Stewart platforms for control purposes. IEEE/ASME Transactions on Mechatronics, 7 (1), 95-99, DOI: 10.1109/3516.990892.10.1109/3516.990892 Search in Google Scholar

[26] Kim, Y.S., Shi, H., Dagalakis, N.G., Marvel, J., Cheok, G. (2019). Design of a six-DOF motion tracking system based on a Stewart platform and ball-and-socket joints. Mechanism and Machine Theory, 133, 84-94. https://doi.org/10.1016/j.mechmachtheory.2018.10.02110.1016/j.mechmachtheory.2018.10.021651300331097845 Search in Google Scholar

[27] International Organization for Standardization. (1998). Manipulating industrial robots — Performance criteria and related test methods. ISO 9283:1998. https://www.iso.org/standard/22244.html Search in Google Scholar

[28] Chen, K.S. (2015). Application of the ISO 9283 standard to test repeatability of the Baxter robot. Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois. http://hdl.handle.net/2142/88019 Search in Google Scholar

[29] Riemer, R., Edan, Y. (2000). Evaluation of influence of target location on robot repeatability. Robotica, 18 (7), 443-449. https://doi.org/10.1017/S026357479900233710.1017/S0263574799002337 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo