1. bookVolume 21 (2021): Issue 1 (February 2021)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

New Electronic Interface Circuits for Humidity Measurement Based on the Current Processing Technique

Published Online: 30 Mar 2021
Volume & Issue: Volume 21 (2021) - Issue 1 (February 2021)
Page range: 1 - 10
Received: 30 Sep 2020
Accepted: 26 Feb 2021
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

The paper describes a new electronic conditioning circuit based on the current-processing technique for accurate and reliable humidity measurement, without post-processing requirements. Pseudobrookite nanocrystalline (Fe2TiO5) thick film was used as capacitive humidity transducer in the proposed design. The interface integrated circuit was realized in TSMC 0.18 μm CMOS technology, but commercial devices were used for practical realization. The sensing principle of the sensor was obtained by converting the information on environment humidity into a frequency variable square-wave electric current signal. The proposed solution features high linearity, insensitivity to temperature, as well as low power consumption. The sensor has a linear function with relative humidity in the range of Relative Humidity (RH) 30-90 %, error below 1.5 %, and sensitivity 8.3 x 1014 Hz/F evaluated over the full range of changes. A fast recovery without the need of any refreshing methods was observed with a change in RH. The total power dissipation of readout circuitry was 1 mW.

Keywords

[1] Reverter, F., Casas, O. (2008). Direct interface circuit for capacitive humidity sensors. Sensors and Actuators A, 143, 315-322. https://doi.org/10.1016/j.sna.2007.11.018.10.1016/j.sna.2007.11.018 Search in Google Scholar

[2] Islam, T. (2017). Advanced interfacing techniques for the capacitive sensors. In Advanced Interfacing Techniques for Sensors. Springer, SSMI 25, p. 73-109. https://doi.org/10.1007/978-3-319-55369-6_2.10.1007/978-3-319-55369-6_2 Search in Google Scholar

[3] Kuriyal, N., Kumar, R., Ramola, V. (2014). Optimization and Simulation of humidity sensor readout circuitry using two stage op amp. IOSR Journal of Electrical and Electronics Engineering, 9 (5), 66-72. https://doi.org/10.9790/1676-09536672.10.9790/1676-09536672 Search in Google Scholar

[4] Jalkanen, T., Määttänen, A., Mäkilä, E., Tuura, J., Kaasalainen, M., Lehto, V.P., Ihalainen, P., Peltonen, J., Salonen, J. (2015). Fabrication of porous silicon based humidity sensing elements on paper. Journal of Sensors, 2015, art. ID 927396. https://doi.org/10.1155/2015/927396.10.1155/2015/927396 Search in Google Scholar

[5] Nizhnik, O., Higuchi, K., Maenaka, K. (2014). A standard CMOS humidity sensor without postprocessing. Sensors, 11 (6), 6197-6202. https://doi.org/10.3390/s110606197.10.3390/s110606197323141722163949 Search in Google Scholar

[6] Nath, P., Hussain, I., Dutta, S., Choudhury, A. (2014). Solvent treated paper resistor for filter circuit operation and relative humidity sensing. Indian Journal of Physics, 88 (10), 1093-1097. https://doi.org/10.1007/s12648-014-0547-x.10.1007/s12648-014-0547-x Search in Google Scholar

[7] Blank, T.A., Eksperiandorova, L.P., Belikov, K.N. (2016). Recent trends of ceramic humidity sensors development. Sensors and Actuators B, 228, 416-442. https://doi.org/10.1016/j.snb.2016.01.015.10.1016/j.snb.2016.01.015 Search in Google Scholar

[8] Urrutia, A., Goicoechea, J., Ricchiuti, A.L., Barrera, V.D., Sales, M.S., Arregui, F.J. (2016). Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating. Sensors and Actuators B, 227, 135-141. https://doi.org/10.1016/j.snb.2015.12.031.10.1016/j.snb.2015.12.031 Search in Google Scholar

[9] Mirzaei, A., Hashemi, B., Janghorban, K. (2016). α- Fe2O3 based nanomaterials as gas sensors. Journal of Materials Science: Materials in Electronics, 27, 3109-3144. https://doi.org/10.1007/s10854-015-4200-z.10.1007/s10854-015-4200-z Search in Google Scholar

[10] Miskovic, G., Lukovic, M.D., Nikolic, M.V., Vasiljevic, Z.Z., Nicolics, J., Aleksic, O.S. (2016). Analysis of electronic properties of pseudobrookite thick films with a possible application for NO gas sensing. In Proceedings of the 39th International Spring Seminar on Electronics Technology, 2016, 386-391. DOI: 10.1109/ISSE.2016.7563226.10.1109/ISSE.2016.7563226 Search in Google Scholar

[11] Nikolic, M.V., Vasiljevic, Z.Z., Lukovic, M.D., Pavlovic, V.P., Vujancevic, J., Radovanovic, M., Krstic, J.B., Vlahovic, B., Pavlovic, V.B. (2018). Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. Sensors and Actuators B, 277, 654-664. https://doi.org/10.1016/j.snb.2018.09.063.10.1016/j.snb.2018.09.063 Search in Google Scholar

[12] Polak, L., Sotner, R., Petrzela, J., Jerabek, J. (2018). CMOS current feedback operational amplifier-based relaxation generator for capacity to voltage sensor interface. Sensors, 18 (12), 4488. https://doi.org/10.3390/s18124488.10.3390/s18124488 Search in Google Scholar

[13] Islam, T., Mukhopadhyay, S.C., Suryadevara, N.K. (2017). Smart sensors and internet of things: A postgraduate paper. IEEE Sensors Journal, 17 (3), 577-584. DOI: 10.1109/JSEN.2016.2630124.10.1109/JSEN.2016.2630124 Search in Google Scholar

[14] Ameloot, T., Torre, P.V., Rogier, H. (2018). A compact low-power LoRa IoT sensor node with extended dynamic range for channel measurements. Sensors, 18 (7), 2173. https://doi.org/10.3390/s18072137.10.3390/s18072137 Search in Google Scholar

[15] Scotti, G., Pennissi, S., Monsurro, P., Trifiletti, A. (2014). 88-μ A 1-MHz stray-insensitive CMOS current-mode interface IC for differential capacitive sensors. IEEE Transactions on Circuits and Systems I, 61 (7), 1905-1916. DOI: 10.1109/TCSI.2014.2298275.10.1109/TCSI.2014.2298275 Search in Google Scholar

[16] Pal, D., Srinivasulu, A., Pal, B.B., Demosthenous, A., Das, B.N. (2009). Current conveyor-based square/triangular waveform generators with improved linearity. IEEE Transactions on Instrumentation and Measurement, 58 (7), 2174-2180. DOI: 10.1109/TIM.2008.2006729.10.1109/TIM.2008.2006729 Search in Google Scholar

[17] Abuelma’atti, M.T., Al-Absi, M.H. (2005). A current conveyor based relaxation oscillator as versatile electronic interface for capacitive and resistive sensors. Int. Journal of Electronics, 92 (8), 473-477. https://doi.org/10.1080/08827510410001694798.10.1080/08827510410001694798 Search in Google Scholar

[18] Ferri, G., Parente, F.R., Stornelli, V. (2017). Current conveyor-based differential capacitance analog interface for displacement sensing application. AEU - International Journal of Electronics and Communications, 81, 83-91. https://doi.org/10.1016/j.aeue.2017.07.014.10.1016/j.aeue.2017.07.014 Search in Google Scholar

[19] Almashary, B., Alhokail, H. (2000). Current-mode triangular wave generator using CCIIs. Microelectronics Journal, 31 (4), 239-243. https://doi.org/10.1016/S0026-2692(99)00106-8.10.1016/S0026-2692(99)00106-8 Search in Google Scholar

[20] Depari, A., Sisinni, E., Flammini, A., Ferri, G., Stornelli, V., Barile, G., Parente, F.R. (2018). Autobalancing analog front end for full-range differential capacitive sensing. IEEE Transactions on Instrumentation and Measurement, 67 (4), 885-893. DOI: 10.1109/TIM.2017.2785160.10.1109/TIM.2017.2785160 Search in Google Scholar

[21] Srinivasulu, A. (2012). Current conveyor based relaxation oscillator with tunable grounded resistor/capacitor. International Journal of Design, Analysis and Tools for Integrated Circuits and Systems, 3 (2). Search in Google Scholar

[22] Marcellis, A.D., Ferri, G., Mantenuto, P. (2017). A CCII-based non-inverting Schmitt trigger and its application as a stable multivibrator for capacitive sensor interfacing. International Journal of Circuit Theory and Applications, 45 (8), 1060-1076. https://doi.org/10.1002/cta.2268.10.1002/cta.2268 Search in Google Scholar

[23] Chien, H.C. (2013). Design and implementation of relaxation generators: New application circuits of the DVCC. International Journal of Electronics, 100 (2), 227-244. https://doi.org/10.1080/00207217.2012.687193.10.1080/00207217.2012.687193 Search in Google Scholar

[24] Chien, H.C. (2013). Square/triangular wave generator using single DO-DVCC and three grounded passive components. American Journal of Electrical and Electronic Engineering, 1 (2), 32-36. https://doi.org/10.12691/ajeee-1-2-3.10.12691/ajeee-1-2-3 Search in Google Scholar

[25] Malik, S., Kishore, K., Artee, S.A., Akbar, T., Islam, T. (2016). A CCII-based relaxation oscillator as a versatile interface for resistive and capacitive sensors. In 3rd International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 359-363. DOI: 10.1109/SPIN.2016.7566719.10.1109/SPIN.2016.7566719 Search in Google Scholar

[26] Khan, A.U., Islam, T., Akhtar, J. (2016). An oscillatorbased active bridge circuit for interfacing capacitive sensors with microcontroller compatibility. IEEE Transactions on Instrumentation and Measurement, 65 (11), 2560-2568. DOI: 10.1109/TIM.2016.2581519.10.1109/TIM.2016.2581519 Search in Google Scholar

[27] Khan, A.U., Islam, T., George, B., Rehman, M. (2019). An efficient interface circuit for lossy capacitive sensors. IEEE Transactions on Instrumentation and Measurement, 68 (3), 829-836. DOI: 10.1109/TIM.2018.2853219.10.1109/TIM.2018.2853219 Search in Google Scholar

[28] Microchip Technology Inc. (2017). Microchip PIC 16(L)F19155. Search in Google Scholar

[29] Chaturvedi, B., Kumar, A. (2019). Fully electronically tunable and easily cascadable square/triangular wave generator with duty cycle adjustment. Journal of Circuits, Systems and Computers, 28 (6), 1950105. https://doi.org/10.1142/S0218126619501056.10.1142/S0218126619501056 Search in Google Scholar

[30] Amico, A.D., Natale, C.D. (2001). A contribution on some basic definitions of sensors properties. IEEE Sensors Journal, 1 (3), 183-190. DOI: 10.1109/JSEN.2001.954831.10.1109/JSEN.2001.954831 Search in Google Scholar

[31] Fine, G.F., Cavanagh, L.M., Afonja, A., Binions, R. (2010). Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors (Basel), 10 (6), 5469-5502. https://doi.org/10.3390/s100605469.10.3390/s100605469324771722219672 Search in Google Scholar

[32] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data — Guide to the expression of uncertainty in measurement, 1st edition. JCGM 100:2008. Search in Google Scholar

[33] Maheshwari, S., Ansari, M.S. (2012). Catalog of realizations for DXCCII using commercially available ICs and applications. Radioengineering, 21 (1), 281-289. Search in Google Scholar

[34] SHAW Moisture Meters Ltd. (2004). Shaw automatic dewpoint meter data manual. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo