1. bookVolume 14 (2014): Issue 5 (October 2014)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Open Access

Compact Electro-Permeabilization System for Controlled Treatment of Biological Cells and Cell Medium Conductivity Change Measurement

Published Online: 05 Nov 2014
Volume & Issue: Volume 14 (2014) - Issue 5 (October 2014)
Page range: 279 - 284
Received: 20 Mar 2014
Accepted: 29 Sep 2014
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

Subjection of biological cells to high intensity pulsed electric field results in the permeabilization of the cell membrane. Measurement of the electrical conductivity change allows an analysis of the dynamics of the process, determination of the permeabilization thresholds, and ion efflux influence. In this work a compact electro-permeabilization system for controlled treatment of biological cells is presented. The system is capable of delivering 5 μs - 5 ms repetitive square wave electric field pulses with amplitude up to 1 kV. Evaluation of the cell medium conductivity change is implemented in the setup, allowing indirect measurement of the ion concentration changes occurring due to the cell membrane permeabilization. The simulation model using SPICE and the experimental data of the proposed system are presented in this work. Experimental data with biological cells is also overviewed

Keywords

[1] Haberl, S., Miklavcic, D., Sersa, G., Frey, W., Rubinsky, B. (2013). Cell membrane electroporation- Part 2: The applications. IEEE Electrical Insulation Magazine, 29 (1), 29-37.10.1109/MEI.2013.6410537Search in Google Scholar

[2] Cahill, K. (2010). Cell-penetrating peptides, electroporation and drug delivery. IET Systems Biology, 4 (6), 367-378.10.1049/iet-syb.2010.000721073236Search in Google Scholar

[3] Tianyi, Z., Tatic-Lucic, S. (2012). On application of positive dielectrophoresis and microstructure confinement on multielectrode array with sensory applications. In IEEE Sensors 2012. IEEE, 1-4.Search in Google Scholar

[4] Lei, U., Lo, Y.J. (2011). Review of the theory of generalised dielectrophoresis. IET Nanobiotechnology, 5 (3), 86-106.10.1049/iet-nbt.2011.000121913790Search in Google Scholar

[5] Potter, H., Heller, R. (2010). Transfection by electroporation. Current Protocols in Molecular Biology. DOI: 10.1002/0471142727.mb0903s62.10.1002/0471142727.mb0903s62297543718265334Search in Google Scholar

[6] Hung, M., Chang, Y. (2012). Single cell lysis and DNA extending using electroporation microfluidic device. BioChip Journal, 6 (1), 84-90.10.1007/s13206-012-6111-xSearch in Google Scholar

[7] Hargrave, B., et al. (2013). Electroporation-mediated gene transfer directly to the swine heart. Gene Therapy, 20, 151-157.10.1038/gt.2012.15338751122456328Search in Google Scholar

[8] Pucinar, G., Krmelj, J., Rebersek, M., Napotnik, T.B, Miklavcic, D. (2011). Equivalent pulse parameters for electroporation. IEEE Transactions on Biomedical Engineering, 58 (11), 3279-3288.10.1109/TBME.2011.216723221900067Search in Google Scholar

[9] Sundararajan, R., et al. 2011. Effect of irreversible electroporation on cancer cells. In 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE, 164-167.Search in Google Scholar

[10] Morshed, B.I., Shams, M., Mussivand, T. (2014). Investigation of low-voltage pulse parameters on electroporation and electrical lysis using a microfluidic device with interdigitated electrodes. IEEE Transactions on Biomedical Engineering, 61 (3), 871-882.10.1109/TBME.2013.229179424557688Search in Google Scholar

[11] Khan, O.G.M., El-Hag, A.H. (2011). Biological cell electroporation using nanosecond electrical pulses. In 1st Middle East Conference on Biomedical Engineering (MECBME). IEEE, 28-31.10.1109/MECBME.2011.5752057Search in Google Scholar

[12] Cima, L.F., Mir, L.M. (2004). Macroscopic characterization of cell electroporation in biological tissue based on electrical measurements. Applied Physics Letters, 85, 4520-4522.10.1063/1.1818728Search in Google Scholar

[13] Davalos, R.V., Rubinsky, B., Otten, D.M. (2002). A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine. IEEE Transactions on Biomedical Engineering, 49 (4), 400-403.10.1109/10.99116811942732Search in Google Scholar

[14] Pavlin, M., et al. (2005). Effect of cell electroporation on the conductivity of a cell suspension. Biophysical Journal, 88 (6), 4378-4390.10.1529/biophysj.104.048975130566515792975Search in Google Scholar

[15] Suzuki, D.O.H., Ramos, A., Ribeiro, M.C.M., Cazarolli, L.H. (2011). Theoretical and experimental analysis of electroporated membrane conductance in cell suspension. IEEE Transactions on Biomedical Engineering, 58 (12), 3310-3318.10.1109/TBME.2010.210307421193368Search in Google Scholar

[16] Kranjc, M., Bajd, F., Sersa, I., Miklavcic, D. (2011). Magnetic resonance electrical impedance tomography for monitoring electric field distribution during tissue electroporation. IEEE Transactions on Biomedical Engineering, 30 (10), 1771-1778.10.1109/TMI.2011.214732821521664Search in Google Scholar

[17] Davalos, R.V., Otten, D.M., Mir, L.M., Rubinsky, B. (2004). Electrical impedance tomography for imaging tissue electroporation. IEEE Transactions on Biomedical Engineering, 51 (5), 761-767.10.1109/TBME.2004.82414815132502Search in Google Scholar

[18] Granot, Y., Ivorra, A., Maor, E., Rubinsky, B. (2009). In vivo imaging of irreversible electroporation by means of electrical impedance tomography. Physics and Medicine in Biology, 54 (16), 4927-4943.10.1088/0031-9155/54/16/00619641242Search in Google Scholar

[19] Hjouj, M., Rubinsky, B. (2010). Magnetic resonance imaging characteristics of nonthermal irreversible electroporation in vegetable tissue. Journal of Membrane Biology, 236 (1), 137-146.10.1007/s00232-010-9281-220631997Search in Google Scholar

[20] Zhang, Y., et al. (2010). MR imaging to assess immediate response to irreversible electroporation for targeted ablation of liver tissues: Preclinical feasibility studies in a rodent model. Radiology, 256 (2), 424-432.10.1148/radiol.10091955290943620656834Search in Google Scholar

[21] Sun, T., Morgan, H. (2010). Single-cell microfluidic impedance cytometry: A review. Microfluid Nanofluid, 8, 423-443.10.1007/s10404-010-0580-9Search in Google Scholar

[22] Das, D., Kamil, F.A., Biswas, K., Das, S. (2014). Evaluation of single cell electrical parameters from bioimpedance of cells suspension. RSC Advances, 4, 18178-18185.10.1039/C4RA00400KSearch in Google Scholar

[23] Weaver, J.C, Smith, K.C, Esser, A.T, Son, R.S, Gowrishankar, T.R. (2012). A brief overview of electroporation pulse strength-duration space: A region where additional effects are expected. Bioelectrochemistry, 87, 236-243.10.1016/j.bioelechem.2012.02.007Search in Google Scholar

[24] Zorec, B., Becker, S., Rebersek, M., Miklavcic, D., Pavselj, N. (2013). Skin electroporation for transdermal drug delivery: The influence of the order of different square wave electric pulses. International Journal of Pharmaceutics, 457 (1), 214-223.10.1016/j.ijpharm.2013.09.020Search in Google Scholar

[25] Charpentier, K.P, Wolf, F., Noble, L., Winn, B., Resnick, M., Dupuy, D.E. (2011). Irreversible electroporation of the liver and liver hilum in swine. HPB, 13 (3), 168-173.10.1111/j.1477-2574.2010.00261.xSearch in Google Scholar

[26] Miklavcic, D., Semrov, D., Mekid, H., Mir, L.M. (2000). A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica et Biophysica Acta, 1523, 73-83.10.1016/S0304-4165(00)00101-XSearch in Google Scholar

[27] Meir, A., Rubinsky, B. (2014). Electrical impedance tomographic imaging of a single cell electroporation. Biomedical Microdevices, 16 (3), 1387-2176.10.1007/s10544-014-9845-5Search in Google Scholar

[28] Polevaya, Y., Ermolina, I., Schlesinger, M., Ginzburg, B.Z., Feldman, Y. (1999). Time domain dielectric spectroscopy study of human cells II. Normal and malignant white blood cells. Biochimica et Biophysica Acta, 1419, 257-271.10.1016/S0005-2736(99)00072-3Search in Google Scholar

[29] Chung, C., Waterfall, M., Pells, S., Menachery, A., Smith, S., Pethig, R. (2011). Dielectrophoretic characterization of mammalian cells above 100 MHz. Journal of Electrical Bioimpedance, 2, 64-71.10.5617/jeb.196Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo