1. bookVolume 38 (2020): Issue 4 (December 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Triple-layer remote phosphor structure: a novel option for the enhancement of WLEDs’ color quality and luminous flux

Published Online: 13 Apr 2021
Volume & Issue: Volume 38 (2020) - Issue 4 (December 2020)
Page range: 654 - 660
Received: 23 Oct 2018
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The remote phosphor as a lighting structure has outstanding luminous efficiency compared to other options, such as conformal or in-cup. However, the lack of uniformity in distributed color has prevented remote phosphor from wider development. The answer to the chromatic performance enhancement that has been suggested by numerous researchers is the multi-layer configuration with two or three different types of chromatic phosphor. The research purpose is to select the best configuration for multi-chip white LEDs (WLEDs) to achieve optimal results in color quality scale (CQS), color rendering index (CRI), light output and color homogeneity. WLEDs mentioned in this paper have two distinct color temperatures, 6600 K and 7700 K. Experimental results show that the remote phosphor structure with three phosphor layers is superior in terms of color rendering, chromatic performance, and emitted light. The deviation of correlated color measured in this structure is also low, which means that the color uniformity is greatly enhanced in this multi-layer lighting structure. This result can be demonstrated by analyzing the scattering characteristics of the phosphoric layers using the Mie theory. The research findings have proven the effectiveness of the multi-phosphor configuration and can serve as a guideline to fabricate WLEDs with better performance.

Keywords

[1] Hui Y.Y., Guan Y.C., Jing H.Z., Yi Y., Wen L.S., Li P.W., Nian Y.Z., Appl. Opt., 57 (2018), 2659. Search in Google Scholar

[2] Sadra S., Baskaran G.K., Rustamzhon M., Mohammad M.A., Houman B.J., Sedat N., Optica, 5 (2018), 793.10.1364/OPTICA.5.000793 Search in Google Scholar

[3] Anh Q.D.N., Le X.P., Lee H.Y., Curr. Opt. Photon., 3 (2019), 78. Search in Google Scholar

[4] Anh Q.D.N., Lee H.Y, J. Chin. Inst. Eng., 39 (2016), 871. Search in Google Scholar

[5] Chuanwen Z., Licai X., Ping Z., Guoxing H., Appl. Opt., 57 (2018), 4665.10.1364/AO.57.00466529877375 Search in Google Scholar

[6] Anh Q.D.N., Vinh H.N., Lee H.Y., Curr. Opt. Photon., 1 (2017), 118. Search in Google Scholar

[7] Zhili Z., Honghai Z., Sheng L., Xinzhong W., Appl. Opt., 57 (2018), 4216.10.1364/AO.57.00421629791396 Search in Google Scholar

[8] Zongtao L., Yong T., Jiasheng L., Xinrui D., Caiman Y., Binhai Y., Opt. Lett., 43 (2018), 1015. Search in Google Scholar

[9] Wanlu Z., Wu Y., Ping Z., Shiliang M., Guilin Z., Guoping C., Guoxing H., Ruiqian G., Opt. Mater. Express, 7 (2017), 3065.10.1364/OME.7.003065 Search in Google Scholar

[10] Heleen F.S., Reinert V., Jonas J.J., Dirk P., Philippe F.S., Opt. Mater. Express, 7 (2017), 3332.10.1364/OME.7.003332 Search in Google Scholar

[11] Zhuxin L., Qiuchun L., Xi C., Xiaoming M., Yulu Z., Xiaoma T., Yifang O., Opt. Express, 25 (2017), 19004.10.1364/OE.25.01900429041090 Search in Google Scholar

[12] Zhijun W., Shuqin L., Panlai L., Zhenggang L., Appl. Opt., 56 (2017), 1167. Search in Google Scholar

[13] Feng L., Lai Y., Chao N., Qin Z., Xiao J., Haiyang L., Xiaobing G., Yan H., Qinghua L., Opt. Express, 25 (2017), 21901. Search in Google Scholar

[14] Huang Y.L., Yung M.P., Jing X.S., Xin Y.C., Chung H.L., Chih M.W., Tzu Y.C., Chien C.L., Opt. Express, 25 (2017), 20466. Search in Google Scholar

[15] Meretska M.L., Ijzerman W.L., Vissenberg G., Lagendijk A., Vos W.L., European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, 2017, 13. Search in Google Scholar

[16] Ken T.S., Marcel B., Daniel E., Sumit G., Stefan G., Helmut B., Edward K., Kenneth J.V., Danielle C., Oleg B. S., Jyoti B., Photon. Res., 5 (2017), A1. Search in Google Scholar

[17] Hansol L., Seonghyeon K., Jong H., Woon J.C., Opt. Lett., 43 (2018), 627. Search in Google Scholar

[18] Xianbo L., Babar H., Li W., Junmin J.C., Patrick Y., J. Lightwave Technol., 36 (2018), 2366. Search in Google Scholar

[19] Butola A., Ahmad A., Dubey V., Singh V., Joshi T., Senthilkumaran P., Mehta D. S., Advances in Microscopic Imaging, 104140G, 2017. Search in Google Scholar

[20] Chi Y., Huang Y., Wu T., Lin G., European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, 2017, 13. Search in Google Scholar

[21] Tsung H.Y., Shin M.W., Ching C.S., Benoit G., Ching Y.C., Yu Y.C., Xuan H.L., Yeh W.Y., Te Y.C., Kun Y.L., Opt. Express, 25 (2017), 29287. Search in Google Scholar

[22] Yen W.M., Weber M.J., Inorganic Phosphors: Compositions, Preparation and Optical Properties, CRC Press, LLC, 2000 N.W. Corporate Blvd., Boca Raton Florida 33431, 2004. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo