1. bookVolume 38 (2020): Issue 4 (December 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Synthesis and characterization of oleic acid stabilized CdTe quantum dots and their properties as luminescence quencher of a pyridine pendented rod-coil homopolymer

Published Online: 13 Apr 2021
Volume & Issue: Volume 38 (2020) - Issue 4 (December 2020)
Page range: 577 - 583
Received: 13 Jul 2018
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

We report a facile one-step non aqueous synthesis of oleic acid stabilized cadmium telluride (CdTe) quantum dots (QDs) with an average diameter of 3 nm to 4 nm by hot injection method. The synthesized oleic acid capped QDs observed by TEM were nearly spherical. The optical properties of QDs were characterized by UV-Vis absorption spectra and photoluminescence (PL) spectra. The structures of QDs and their surface passivation were further verified using transmission electron microscope (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The quenching effect of the CdTe QD was explored by addition of CdTe nanocrystals into a solution of rod-coil homopolymer (poly[10-(6-(9,9-diethyl-7-(pyridin-4- yl)-9H-fluoren-2-yl)naphthalen-2-yloxy) decyl methacrylate]) (PFNA) having pendent pyridine. The gradual addition of quantum dots to the solution of PFNA quenched the PL spectra of PFNA. This may be used to explore the coordination ability of pyridine containing homopolymer with CdTe quantum dots.

Keywords

[1] Zhao T., Goodwin E D., Guo J., Wang H., Diroll B.T, Murray C.B., Kagan C.R., ACS Nano, 10 (2016), 9267.10.1021/acsnano.6b0317527649044 Search in Google Scholar

[2] Houtepen A.J., Hens Z., Owen J.S., Infante I., Chem. Mater., 2 (2017), 752.10.1021/acs.chemmater.6b04648 Search in Google Scholar

[3] Yukawa H., Baba Y., Anal. Chem., 5 (2017), 2671.10.1021/acs.analchem.6b0476328194939 Search in Google Scholar

[4] Yue Z., Lisdat F., Parak W.J., Hickey S.G., Tu L., Sabir N., Dorfs D., Bigall N.C., ACS Appl. Mater. Interfaces, 8 (2013), 2800.10.1021/am302866223547912 Search in Google Scholar

[5] Tiwari A., Dhoble S.J., Cryst. Growth Des., 1 (2017), 381.10.1021/acs.cgd.6b01463 Search in Google Scholar

[6] Rao C N.R., Matte H.S.S.R., Voggu R., Govindaraj A., Dalton Trans., 17 (2012), 5089.10.1039/c2dt12266a22430878 Search in Google Scholar

[7] Xu S., Lu H., Li J., Song X., Wang A., Chen L., Han S., ACS Appl. Mater. Interfaces, 16 (2013), 8146.10.1021/am402207623876063 Search in Google Scholar

[8] Hühn J., Carrion C.C., Soliman M.G., Pfeiffer C., Valdeperez D., Masood A., Chakraborty I., Zhu L., Gallego M., Yue Z., Carril M., Feliu N., Escudero A., Alkilany A.M., Pelaz B., Pino P.D., Parak W.J., Chem. Mater., 1 (2017), 399.10.1021/acs.chemmater.6b04738 Search in Google Scholar

[9] Hetsch F., Xu X., Wang H., Kershaw S.V., Rogach A.L., J. Phys. Chem. Lett., 15 (2011), 1879.10.1021/jz200802j Search in Google Scholar

[10] Wang K., Zhang R., Sun N., Li X., Wang J., Cao Y., Pei R., ACS Appl. Mater. Interfaces, 39 (2016), 25834.10.1021/acsami.6b0961427627052 Search in Google Scholar

[11] Islam M.A., Huda Q., Hossain M.S., Aliyu M.M., Karim M.R., Sopian K., Amin N., Cur. Appl. Phys., 13 (2013), 115.10.1016/j.cap.2013.02.015 Search in Google Scholar

[12] Gutiérrez-Lazos C.D., Ortega-López M., Pérez-Guzmán M.A., Espinoza-Rivas A.M., Solís-Pomar F., Ortega-Amaya R., SilvaVidaurri L.G., Castro-Peña V.C., PérezTijerina E., Beilstein J. Nanotechnol., 5 (2014), 881.10.3762/bjnano.5.100407741724991525 Search in Google Scholar

[13] Jung J., Pang X., Feng C., Lin Z., Langmuir, 25 (2013), 8086.10.1021/la400925y23600796 Search in Google Scholar

[14] Han J., Zhou Z., Bu X., Zhu S., Zhang H., Sun H., Yang B., Analyst, 12 (2013), 3402.10.1039/c3an00310h23671901 Search in Google Scholar

[15] Bazargan A.M., Sharif F., Mazinani S., Naderi N., J. Mater. Sci.: Mat. Electron., 8 (2016), 8221.10.1007/s10854-016-4827-4 Search in Google Scholar

[16] Sahu D., Chu H.C.,Yang P.J., Lin H.C., Macromol. Chem. Phys., 15 (2012), 1550.10.1002/macp.201100550 Search in Google Scholar

[17] Sahu D., Chakraborty S., Mater. Sci.-Poland, 1 (2017), 217.10.1515/msp-2017-0034 Search in Google Scholar

[18] Shen M., Jia W., You Y., Hu Y., Li F., Tian S., Li J., Jin Y., Han D., Nanoscale Res. Lett., 1 (2013), 253. Search in Google Scholar

[19] Wang Y., Wang R., Liu S., Yang K., Zhou L., Li H., Bull. Chem. Soc. Ethiop., 3 (2013), 387. Search in Google Scholar

[20] Yu Jasieniak J., Smith L., Embden J.V., Mulvane P., J. Phys. Chem. C, 113 (2009), 19468.10.1021/jp906827m Search in Google Scholar

[21] Nemade K.R., Waghuley S.A., Res. Phys., 3 (2013), 52.10.1016/j.rinp.2013.03.001 Search in Google Scholar

[22] Mohanta D., Narayanan S.S., Pal S.K., Raychaudhuri A.K., J. Exp. Nanosci., 4 (2009), 177.10.1080/17458080902866204 Search in Google Scholar

[23] Kim D.J., Koo K.K., Cryst. Growth Des., 2 (2009), 1153.10.1021/cg8009942 Search in Google Scholar

[24] Depalo N., Comparelli R., Huskens J., Ludden M.J.W., Perl A., Agostiano A., Striccoli M., Curri M.L., Langmuir, 23 (2012), 8711.10.1021/la300746922594772 Search in Google Scholar

[25] Baoqing S., Jipeng L., Zhixue W., Chinese J. Chem. Eng., 6 (2006), 814. Search in Google Scholar

[26] Wang M., Felorzabihi N., Guerin G., Haley J.C., Scholes G.D., Winnik M.A., Macromolecules, 17 (2007), 6377.10.1021/ma070553v Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo