1. bookVolume 37 (2019): Issue 1 (March 2019)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Effect of Mn content in Fe(1−x)MnxB (x = 0, 0.25, 0.5, 0.75 and 1) on physical properties - ab initio calculations

Published Online: 06 Mar 2019
Volume & Issue: Volume 37 (2019) - Issue 1 (March 2019)
Page range: 71 - 82
Received: 25 Aug 2017
Accepted: 26 May 2018
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Structural, electronic, intrinsic magnetic, anisotropic elastic properties, sound velocities and Debye temperature of Fe1−xMnx B (x = 0, 0.25, 0.5, 0.75, 1) transition metal monoborides have been studied by first-principles calculations within the method of virtual crystal approximation (VCA) based on density-functional theory (DFT) through generalized gradient approximation (GGA). The average magnetic moment per cell increased with increasing of Mn content, which could be associated with the relationship between the composition and magnetic properties. The observed magnetic behavior of Fe1−xMnx B compounds can be explained by Stoner model. Lattice parameters and Debye temperature agree well with the experimental values. Furthermore, we have plotted three-dimensional (3D) surfaces and planar contours of the directional dependent Young and bulk moduli of the compounds on several crystallographic planes, to reveal their elastic anisotropy versus Mn content (x) in Fe1−xMnx B.

Keywords

[1] Mohn P., Pettifor D., J. Phys. C, 21 (1988), 2829.10.1088/0022-3719/21/15/015Search in Google Scholar

[2] Malozemoff A., Williams A., Moruzzi V., Phys. Rev. B, 29 (1984), 1620.10.1103/PhysRevB.29.1620Search in Google Scholar

[3] Ching W., Xu Y.N., Harmon B., Ye J., Leung T., Phys. Rev. B, 42 (1990), 4460.10.1103/PhysRevB.42.44609995976Open DOISearch in Google Scholar

[4] Hausleitner C., Hafner J., Phys. Rev. B, 47 (1993), 5689.10.1103/PhysRevB.47.5689Open DOISearch in Google Scholar

[5] Zhong W., Overney G., Toma D., Phys. Rev. B, 47 (1993), 95.10.1103/PhysRevB.47.95Open DOISearch in Google Scholar

[6] Kervan S., J. Supercond. Nov. Magn., 24 (2011), 815.10.1007/s10948-010-1024-1Open DOISearch in Google Scholar

[7] Wang C., Wang Z.C., Mei Y.X., Li Y.K., Li L., Tang Z.T., Liu Y., Zhang P., Zhai H.F., Xu Z.A., J. Am. Chem. Soc., 138 (2016), 2170.10.1021/jacs.6b0023626853632Search in Google Scholar

[8] Hafner J., Tegze M., Becker C., Phys. Rev. B, 49 (1994), 285.10.1103/PhysRevB.49.28510009285Search in Google Scholar

[9] Taylor J., Duffy J., Bebb A., Cooper M., Dugdale S., McCarthy J., Timms D., Greig D., Xu Y., Phys. Rev. B, 63 (2001), 220404.10.1103/PhysRevB.63.220404Search in Google Scholar

[10] Jing C., Cao S., Zhang J., Phys. Rev. B, 68 (2003), 224407.10.1103/PhysRevD.68.101501Search in Google Scholar

[11] Gueddouh A., Bentria B., Lefkaier I., J. Magn. Magn. Mater., 406 (2016), 192.10.1016/j.jmmm.2016.01.013Search in Google Scholar

[12] Guo Z.X., Multiscale materials modelling: Fundamentals and applications, Elsevier, 2007.10.1201/9781439824405Search in Google Scholar

[13] Wisniewski R., Rostocki A., Magiera A., Zych W., J. Magn. Magn. Mater., 81 (1989), 121.10.1016/0304-8853(89)90238-2Open DOISearch in Google Scholar

[14] Soumura T., Takeda K., Wakano T., Terasawa K., Maeda T., J. Magn. Magn. Mater., 58 (1986), 202.10.1016/0304-8853(86)90438-5Open DOISearch in Google Scholar

[15] Zhu H., Ni C., Zhang F., Du Y., Xiao J.Q., J. Appl. Phys., 97 (2005), 10M512.10.1063/1.1851953Search in Google Scholar

[16] Bratkovsky A., Rashkeev S., Wendin G., Phys. Rev. B, 48 (1993), 6260.10.1103/PhysRevB.48.6260Open DOISearch in Google Scholar

[17] Nordheim L., Ann. Phys., 401 (1931), 607.10.1002/andp.19314010507Search in Google Scholar

[18] Segall M., Lindan P.J., Probert M.A., Pickard C., Hasnip P., Clark S., Payne M., J. Phys. Condens. Matter., 14 (2002), 2717.10.1088/0953-8984/14/11/301Open DOISearch in Google Scholar

[19] Perdew J.P., Burke K., Ernzerhof M., Phys. Rev. Lett., 77 (1996), 3865.10.1103/PhysRevLett.77.386510062328Search in Google Scholar

[20] Monkhorst H.J., Pack J. D., Phys. Rev. B, 13 (1976), 5188.10.1103/PhysRevB.13.5188Open DOISearch in Google Scholar

[21] Broyden C.G., IMA J. Appl. Math., 6 (1970), 76.10.1093/imamat/6.1.76Search in Google Scholar

[22] Fletcher R., Comput. J., 13 (1970), 317.10.1093/comjnl/13.3.317Open DOISearch in Google Scholar

[23] Goldfarb D., Math. Comput., 24 (1970), 23.10.1090/S0025-5718-1970-0258249-6Search in Google Scholar

[24] Shanno D.F., Math. Comput., 24 (1970), 647.10.1090/S0025-5718-1970-0274029-XOpen DOISearch in Google Scholar

[25] Bjurström T., Röntgenanalyse der Systeme Eisen-Bor, Kobalt-Bor und Nickel-Bor, Almqvist & Wiksell, 1933.Search in Google Scholar

[26] Hanson B., Mahnig M., Toth L.E., Z. Naturforsch., 26 (1971), 739.10.1515/znb-1971-0727Open DOISearch in Google Scholar

[27] Turchanin M., Agraval P., Powder Metall. Met. Ceram., 47 (2008), 26.10.1007/s11106-008-0006-3Search in Google Scholar

[28] Havinga E., Damsma H., Hokkeling P., J. Less. Common. Met., 27 (1972), 169.10.1016/0022-5088(72)90028-8Search in Google Scholar

[29] Hill R., Proc. Phys. Soc., 65 (1952), 349.10.1088/0370-1298/65/5/307Open DOISearch in Google Scholar

[30] Janak J., Phys. Rev. B, 16 (1977), 255.10.1103/PhysRevB.16.255Open DOISearch in Google Scholar

[31] Lee P.H., Chen S.H., Chen Y.A., Chen K.L., Wang T.W., Baoj Phys., 2 (2016).Search in Google Scholar

[32] Lee P., Xiao Z., Chen K., Chen Y., Kao S., Chin T., Physica B, 404 (2009), 1989.10.1016/j.physb.2009.03.029Search in Google Scholar

[33] Landau L., Sov. Phys. Jetp., 3 (1957), 920.Search in Google Scholar

[34] Landau L., Sov. Phys. Jetp., 8 (1959), 70.Search in Google Scholar

[35] Gao X., Jiang Y., Zhou R., Feng J., J. Alloy. Compd., 587 (2014), 819.10.1016/j.jallcom.2013.11.005Search in Google Scholar

[36] Duan Y., Sun Y., Peng M., Zhou S., J. Alloy. Compd., 595 (2014), 14.10.1016/j.jallcom.2014.01.108Search in Google Scholar

[37] Gueddouh A., Bentria B., Bourourou Y., Maabed S., Mater. Sci.-Poland, 34 (2016), 503.10.1515/msp-2016-0078Search in Google Scholar

[38] Sun L., Gao Y., Xiao B., Li Y., Wang G., J. Alloy. Compd., 579 (2013), 457.10.1016/j.jallcom.2013.06.119Search in Google Scholar

[39] Music D., Houben A., Dronskowski R., Schneider J.M., Phys. Rev. B, 75 (2007), 174102.10.1103/PhysRevB.75.174102Search in Google Scholar

[40] Niu H., Chen X.Q., Ren W., Zhu Q., Oganov A.R., Li D., Li Y., Phys. Chem. Chem. Phys., 16 (2014), 15866.10.1039/C4CP01339E24962459Open DOISearch in Google Scholar

[41] Li L.H., Wang W.L., Hu L., Wei B.B., Intermetallics, 46 (2014), 211.10.1016/j.intermet.2013.11.007Search in Google Scholar

[42] Gueddouh A., Phase Transitions, 90 (2017), 984.10.1080/01411594.2017.1302088Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo