1. bookVolume 36 (2018): Issue 2 (June 2018)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Facile microwave-assisted synthesis of Al:Mn co-doped PbI2 nanosheets: structural, vibrational, morphological, dielectric and radiation activity studies

Published Online: 25 Jun 2018
Volume & Issue: Volume 36 (2018) - Issue 2 (June 2018)
Page range: 320 - 326
Received: 29 Oct 2017
Accepted: 14 Apr 2018
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Herein, we report a successful development of nano-scale pure and Al and Mn co-doped PbI2 using facile microwaveassisted route. Structural study was done through X-ray diffraction analysis of grain size, dislocation density and lattice strain. The crystallite size was found to vary from 28 nm to 40 nm due to Al:Mn co-doping in PbI2. The presence of various vibrational modes was confirmed by FT-IR spectroscopy and red shifting was observed in peak positions compared to the bulk. Surface morphology, examined using a scanning electron microscope, confirmed the formation of single crystal nanosheets of a thickness in the range of 10 nm to 30 nm. The single crystal nanosheets were found to be transformed to large area nanosheets due to the doping. Enhancement in dielectric constant from ~7.5 to 11 was observed with increasing Al doping concentration. Linear attenuation coefficient was calculated and showed the enhancement of blocking gamma rays with increasing doping concentration. Its value was found to increase from 7.5 to 12.8 with the doping. The results suggest that the synthesized nanostructures can be used for detection and absorption of gamma rays emitted by 137Cs and 241Am sources.

Keywords

[1] Dugan A., Henisch H., J. Phys. Chem. Solids, 28 (1967), 971.10.1016/0022-3697(67)90190-4Open DOISearch in Google Scholar

[2] Zhu X., Wei Z., Jin Y., Xiang A., Cryst. Res. Technol., 42 (2007), 456.10.1002/crat.200610847Open DOISearch in Google Scholar

[3] Silva Da F.A., Veissid N., Veissid C., Pepe C., N. Olivaira De B.N., Silva Da B.A., Appl. Phys. Lett, 69 (1996) 1930.10.1063/1.117625Search in Google Scholar

[4] Chaudhary S.K., Cryst. Struct. Theor. Appl., 1 (2012) 21.Search in Google Scholar

[5] Finlayson C., Sazio P., J. Phys. D Appl. Phys., 39 (2006), 1477.10.1088/0022-3727/39/8/003Search in Google Scholar

[6] Kleim R., Raga F., J. Phys. Chem. Solids, 30 (1969), 2213.10.1016/0022-3697(69)90146-2Open DOISearch in Google Scholar

[7] Ando M., Yazaki M., Katayama I., Ichida H., Wakaiki S., Kanematsu Y., Takeda J., Phys. Rev. B, 86 (2012), 155206.10.1103/PhysRevB.86.155206Search in Google Scholar

[8] Quilettes De D.W., Vorpahl S.M., Stranks S.D., Nagaoka H., Eperon G.E., Ziffer M.E., Snaith H.J., Ginger D.S., Science, 348 (2015), 683.10.1126/science.aaa533325931446Search in Google Scholar

[9] Chen Q., Zhou H., Hong Z., Luo S., Duan H.-S., Wang H.-H., Liu Y., Li G., Yang Y., J. Am. Chem. Soc., 136 (2013), 622.10.1021/ja411509g24359486Search in Google Scholar

[10] Shkir M., Yahia I.S., Alfaify S., Abutalib M.M., Muhammad S., J. Mol. Struct., 1110 (2016), 83.10.1016/j.molstruc.2016.01.014Search in Google Scholar

[11] Shkir M., Yahia I.S., Ganesh V., Algarni H., Alfaify S., Mater. Lett., 176 (2016), 135.10.1016/j.matlet.2016.04.062Search in Google Scholar

[12] Goldberg M., Langer R., Jia X., J. Biomat. Sci.- Polym. E., 18 (2007), 241.10.1163/156856207779996931301775417471764Search in Google Scholar

[13] Klabunde K.J., Richards R., Nanoscale Materials In Chemistry, Wiley Online Library, 2001.10.1002/0471220620Search in Google Scholar

[14] Kaviyarasu K., Sajan D., Selvakumar M.S., Thomas S.A., Anand D.P., J. Phys. Chem. Solids, 73 (2012), 1396.10.1016/j.jpcs.2012.06.005Search in Google Scholar

[15] Dag I., Lifshitz E., J. Phys. Chem., 100 (1996), 8962.10.1021/jp952863ySearch in Google Scholar

[16] Kasi G.K., Dollahon N.R., Ahmadi T.S., J. Phys. D Appl. Phys., 40 (2007), 1778.10.1088/0022-3727/40/6/026Search in Google Scholar

[17] Zhu G., Liu P., Hojamberdiev M., Zhou J.-P., Huang X., Feng B., Yang R., Appl. Phys. A-Mater., 98 (2010), 299.10.1007/s00339-009-5412-yOpen DOISearch in Google Scholar

[18] Chen X., Mao S.S., Chem. Rev., 107 (2007), 2891.10.1021/cr050053517590053Search in Google Scholar

[19] Rogers J., Lagally M., Nuzzo R., Nature, 477 (2011), 45.10.1038/nature1038121886156Search in Google Scholar

[20] Kim D.-H., Lu N., Ghaffari R., Rogers J.A., Npg Asia Mater., 4 (2012), E15.10.1038/am.2012.27Search in Google Scholar

[21] Shkir M., Alfaify S., Yahia I.S., Ganesh V., Shoukry H., Physica B, 508 (2017), 41.10.1016/j.physb.2016.12.016Search in Google Scholar

[22] Yahia I., Abutalib M., J. Mol. Struct., 1138 (2017), 215.10.1016/j.molstruc.2017.03.016Search in Google Scholar

[23] Yahia I.S., Shkir M., Alfaify S., Ganesh V., Zahran H.Y., Kilany M., Mat. Sci. Eng. C, 72 (2017), 472.10.1016/j.msec.2016.11.07428024611Search in Google Scholar

[24] Shkir M., Alfaify S., Sci. Rep., 7 (2017), 16091.10.1038/s41598-017-16086-x570096829170414Open DOISearch in Google Scholar

[25] Shkir M., Kilany M., Yahia I.S., Ceram. Int., 43 (2016), 39.10.1016/j.ceramint.2017.08.009Search in Google Scholar

[26] Condeles J., Mulato M., J. Phys. Chem. Solids., 89 (2016), 39.10.1016/j.jpcs.2015.10.012Search in Google Scholar

[27] Ahmed W., Jackson M.J., Emerging Nanotechnologies For Manufacturing, William Andrew, 2014.10.1016/B978-0-323-28990-0.00001-4Search in Google Scholar

[28] Harald I., Lüth H., Solid-State Physics: An Introduction To Principles Of Materials Science, Springer-Verlag, 1996.Search in Google Scholar

[29] Jilani A., Abdel-Wahab M.S., Zahran H., Yahia I., Al-Ghamdi A.A., Appl. Phys. A, 122 (2016), 862.10.1007/s00339-016-0392-1Search in Google Scholar

[30] Shkir M., Alfaify S., Ganesh V., Yahia I., Solid State Sci., 70 (2017), 81.10.1016/j.solidstatesciences.2017.06.006Search in Google Scholar

[31] Shanmugam G., Thirupugalmani K., Rakhikrishna R., Philip J., Brahadeeswaran S., J. Therm. Anal. Calorim., 114 (2013), 1245.10.1007/s10973-013-3156-6Search in Google Scholar

[32] Kaygili O., Dorozhkin S.V., Ates T., Alghamdi A.A., Yakuphanoglu F., Ceram. Int., 40 (2014), 9395.10.1016/j.ceramint.2014.02.009Search in Google Scholar

[33] Jonscher A.K., Nature, 267 (1977), 673., Solid State Sci., 70 (2017), 81.10.1038/267673a0Search in Google Scholar

[34] Jain V.K., Verma A., Physics Of Semiconductor Devices: 17th International Workshop On The Physics Of Semiconductor Devices 2013, Springer Science & Business Media, 2013.10.1007/978-3-319-03002-9Search in Google Scholar

[35] Shapiro J., Radiation Protection: A Guide For Scientists, Regulators, And Physicians, La Editorial, Upr, 2002.Search in Google Scholar

[36] Hubbell J.H., Int. J. Appl. Radiat. Isotopes, 33 (1982), 1269.10.1016/0020-708X(82)90248-4Search in Google Scholar

[37] Badran H., Yahia I., Hamdy M.S., Awwad N., Radiat. Phys. Chem., 130 (2017), 85.10.1016/j.radphyschem.2016.08.001Search in Google Scholar

[38] Martin J.E., Physics For Radiation Protection: A Handbook, John Wiley & Sons, 2006.10.1002/9783527618798Search in Google Scholar

[39] Shkir M., Alfaify S., Yahia I.S., Hamdy M.S., Ganesh V., Algarni H., J. Nanopart. Res., 19 (2017), 328.10.1007/s11051-017-4020-6Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo