1. bookVolume 3 (2020): Issue 4 (December 2020)
Journal Details
License
Format
Journal
First Published
30 May 2018
Publication timeframe
1 time per year
Languages
English
access type Open Access

Panton-Valentine Leukocidin-Positive Methicillin-Resistant Staphylococcus Aureus with Reduced Vancomycin Susceptibility: An Emerging Trend?

Published Online: 31 Dec 2020
Page range: 165 - 181
Journal Details
License
Format
Journal
First Published
30 May 2018
Publication timeframe
1 time per year
Languages
English

Methicillin-resistant Staphylococcus aureus (MRSA) is a major multidrug-resistant nosocomial pathogen. This class of MRSA, first reported in the early 1960s and now termed healthcare-associated MRSA (HA-MRSA), was followed by a newer class of MRSA, community-associated MRSA (CA-MRSA). The unique feature of the initial CAMRSA included Panton-Valentine leukocidin (PVL), an abscess-associated toxin and also S. aureus spread factor. CA-MRSA usually causes skin and soft-tissue infections, but occasionally causes invasive infections, including (necrotizing) pneumonia, sometimes preceded by respiratory virus infections. The most successful CA-MRSA USA300 (ST8/SCCmecIVa) caused an epidemic in the United States. In Russia, we first detected PVL-positive CAMRSA (ST30/SCCmecIVc) in Vladivostok in 2006, but with no more PVL-positive MRSA isolation. However, we recently isolated four lineages of PVL-positive MRSA in Krasnoyarsk. Regarding chemotherapy against invasive MRSA infections, vancomycin still remains a gold standard, in addition to some other anti-MRSA agents such as teicoplanin, linezolid, and daptomycin. For resistance, vancomycin-resistant MRSA (VRSA) with MICs of ≥16 μg/mL appeared in patients, but cases are still limited. However, clinically, infections from strains with MICs of ≥1.5 μg/mL, even albeit with susceptible MICs (≤2 μg/mL), respond poorly to vancomycin. Some of those bacteria have been bacteriologically characterized as vancomycin-intermediate S. aureus (VISA) and heterogeneous VISA (hVISA), generally with HA-MRSA genetic backgrounds. The features of the above PVL-positive Krasnoyarsk MRSA include reduced susceptibility to vancomycin, which meets the criteria of hVISA. In this review, we discuss a possible new trend of PVL-positive hVISA, which may spread and threaten human health in community settings.

Keywords

1. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298(15):1763–71. https://doi.org/10.1001/jama.298.15.1763Search in Google Scholar

2. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010;23(3):616–87. https://doi.org/10.1128/CMR.00081-09Search in Google Scholar

3. Otto M. Community-associated MRSA: what makes them special? Int J Med Microbiol. 2013;303(6-7):324–30. https://doi.org/10.1016/j.ijmm.2013.02.007Search in Google Scholar

4. Lindsay JA. Hospital-associated MRSA and antibiotic resistance – What have we learned from genomics? Int J Med Microbiol. 2013;303(6-7):318–23. https://doi.org/10.1016/j.ijmm.2013.02.005Search in Google Scholar

5. Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018;31(4):e00020–18. https://doi.org/10.1128/CMR.00020-18Search in Google Scholar

6. World Health Organization [site]. Antimicrobial resistance: global report on surveillance. Geneva: World Health Organization; 2014 [cited 2020 Dec 20]. 257 p. Available from: https://www.who.int/drugresistance/documents/surveillancereport/en/Search in Google Scholar

7. Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ Etienne J, et al. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA. 2003;290(22):2976–84. https://doi.org/10.1001/jama.290.22.2976Search in Google Scholar

8. Harinstein L, Schafer J, D’Amico F. Risk factors associated with the conversion of meticillin-resistant Staphylococcus aureus colonisation to healthcare-associated infection. J Hosp Infect. 2011;79(3):194–7. https://doi.org/10.1016/j.jhin.2011.03.017Search in Google Scholar

9. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, Chantratita N, et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science. 2010;327(5964):469–74. https://doi.org/10.1126/science.1182395Search in Google Scholar

10. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet. 2001;357(9264):1225–40. https://doi.org/10.1016/s0140-6736(00)04403-2Search in Google Scholar

11. International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother. 2009;53(12):4961–7. https://doi.org/10.1128/AAC.00579-09Search in Google Scholar

12. Centers for Disease Control and Prevention (CDC). Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus - Minnesota and North Dakota, 1997-1999. MMWR Morb Mortal Wkly Rep. 1999;48(32):707–10.Search in Google Scholar

13. Braun T, Kahanov L. Community-associated methicillin-resistant Staphylococcus aureus infection rates and management among student-athletes. Med Sci Sports Exerc. 2018;50(9):1802–9. https://dx.doi.org/10.1249/MSS.0000000000001649Search in Google Scholar

14. Diep BA, Otto M. The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol. 2008;16(8):361–9. https://doi.org/10.1016/j.tim.2008.05.002Search in Google Scholar

15. Tenover FC, Goering RV. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J Antimicrob Che-mother. 2009;64(3):441–6. https://doi.org/10.1093/jac/dkp241Search in Google Scholar

16. Centers for Disease Control and Prevention (CDC). Severe methicillin-resistant Staphylococcus aureus community-acquired pneumonia associated with influenza-Louisiana and Georgia, December 2006-January 2007. Morb Mortal Wkly Rep. 2007;56(14):325–9.Search in Google Scholar

17. Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet. 2006;367(9512):731–9. https://doi.org/10.1016/S0140-6736(06)68231-7Search in Google Scholar

18. Isobe H, Takano T, Nishiyama A, Hung WC, Kuniyuki S, Shibuya Y, et al. Evolution and virulence of Panton-Valentine leukocidin-positive ST30 methicillin-resistant Staphylococcus aureus in the past 30 years in Japan. Biomed Res. 2012;33(2):97–109. https://doi.org/10.2220/biomedres.33.97Search in Google Scholar

19. Hung WC, Takano T, Higuchi W, Iwao Y, Khokhlova O, Teng LJ, et al. Comparative genomics of community-acquired ST59 methicillin-resistant Staphylococcus aureus in Taiwan: novel mobile resistance structures with IS1216V. PLoS One. 2012;7(10):e46987. https://doi.org/10.1371/journal.pone.0046987Search in Google Scholar

20. Fluit AC, Carpaij N, Majoor EA, Weinstein RA, Aroutcheva A, Rice TW, et al. Comparison of an ST80 MRSA strain from the USA with European ST80 strains. J Antimicrob Chemother. 2015;70(3):664–9. https://doi.org/10.1093/jac/dku459Search in Google Scholar

21. Strauß L, Stegger M, Akpaka PE, Alabi A, Breurec S, Coombs G, et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc Natl Acad Sci U S A. 2017;114(49):E10596–E10604. https://dx.doi.org/10.1073/pnas.1702472114Search in Google Scholar

22. Copin R, Sause WE, Fulmer Y, Balasubramanian D, Dyzenhaus S, Ahmed JM, et al. Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A. 2019;116(5):1745–54. https://dx.doi.org/10.1073/pnas.1814265116Search in Google Scholar

23. Shallcross LJ, Fragaszy E, Johnson AM, Hayward AC. The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13(1):43–54. https://doi.org/10.1016/S1473-3099(12)70238-4Search in Google Scholar

24. Yamamoto T, Hung WC, Takano T, Nishiyama A. Genetic nature and virulence of community-associated methicillin-resistant Staphylococcus aureus. BioMedicine. 2013;3:2–18.Search in Google Scholar

25. Baranovich T, Potapov V, Yamamoto T. The first isolation of Panton-Valentine leukocidin (PVL) positive community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) in Russia. Euro Surveill. 2007;12(3):E070315.070314. https://doi.org/10.2807/esw.12.11.03157-enSearch in Google Scholar

26. Nichol KA, Adam HJ, Golding GR, Lagacé-Wiens PRS, Karlowsky JA, Hoban DJ, et al. Characterization of MRSA in Canada from 2007 to 2016. J Antimicrob Chemother. 2019;74(Suppl 4):iv55– iv63. https://dx.doi.org/10.1093/jac/dkz288Search in Google Scholar

27. David MZ, Daum RS. Treatment of Staphylococcus aureus infections. Curr Top Microbiol Immunol. 2017;409:325–83. https://doi.org/10.1007/82_2017_42Search in Google Scholar

28. Khan A, Wilson B, Gould IM. Current and future treatment options for community-associated MRSA infection. Expert Opin Pharmacother. 2018;19(5):457–70. https://doi.org/10.1080/14656566.2018.1442826Search in Google Scholar

29. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne PA, USA: Clinical and Laboratory Standards Institute; 2020. 13 p.Search in Google Scholar

30. McGuinness WA, Malachowa N, DeLeo FR. Vancomycin Resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90(2):269–81.Search in Google Scholar

31. Howden BP, Davies JK, Johnson PDR, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23(1):99–139. https://doi.org/10.1128/CMR.00042-09Search in Google Scholar

32. Hiramatsu K, Kayayama Y, Matsuo M, Aiba Y, Saito M, Hishinuma T. et al. Vancomycin-intermediate resistance in Staphylococcus aureus. J Glob Antimicrob Resist. 2014;2(4):213–24. https://dx.doi.org/10.1016/j.jgar.2014.04.006Search in Google Scholar

33. Hu Q, Peng H, Rao X. Molecular Events for Promotion of Vancomycin Resistance in Vancomycin Intermediate Staphylococcus aureus. Front Microbiol. 2016;7:1601. https://dx.doi.org/10.3389/fmicb.2016.01601Search in Google Scholar

34. Lodise TP, Graves J, Evans A, Graffunder E, Helmecke M, Lo-maestro BM, et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother. 2008;52(9):3315–20. https://dx.doi.org/10.1128/AAC.00113-08Search in Google Scholar

35. Mendes RE, Deshpande LM, Smyth DS, Shopsin B, Farrell DJ, Jones RN. Characterization of methicillin-resistant Staphylococcus aureus strains recovered from a phase IV clinical trial for line-zolid versus vancomycin for treatment of nosocomial pneumonia. J Clin Microbiol. 2012;50(11):3694–702. https://doi.org/10.1128/JCM.02024-12Search in Google Scholar

36. Bakthavatchalam YD, Babu P, Munusamy E, Dwarakanathan HT, Rupali P, Zervos M, et al. Genomic insights on heterogeneous resistance to vancomycin and teicoplanin in methicillin-resistant Staphylococcus aureus: A first report from South India. PLoS One. 2019;14(12):e0227009. https://doi.org/10.1371/journal.pone.0227009Search in Google Scholar

37. Ozmen Capin BB, Tekeli A, Karahan ZC. Evaluation of the presence and characterization of vancomycin-intermediate and heterogeneous vancomycin-intermediate level resistance among bloodstream isolates of methicillin-resistant Staphylococcus aureus. Microb Drug Resist. 2020;26(3):238–44. https://doi.org/10.1089/mdr.2019.0178Search in Google Scholar

38. Matsuo M, Cui L, Kim J, Hiramatsu K. Comprehensive identification of mutations responsible for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)-to-VISA conversion in laboratory-generated VISA strains derived from hVISA clinical strain Mu3. Antimicrob Agents Chemother. 2013;57(12):5843–53. https://dx.doi.org/10.1128/AAC.00425-13Search in Google Scholar

39. Lee MY, Lee WI, Kim MH, Kang SY, Kim YJ. Etest methods for screening heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) strains. Curr Microbiol. 2020;77(10):3158–67. https://doi.org/10.1007/s00284-020-02123-ySearch in Google Scholar

40. Liu C, Chambers HF. Staphylococcus aureus with heterogeneous resistance to vancomycin: epidemiology, clinical significance, and critical assessment of diagnostic methods. Antimicrob Agents Chemother. 2003;47(10):3040–5. https://dx.doi.org/10.1128/aac.47.10.3040-3045.2003Search in Google Scholar

41. Chang SC, Liu TP, Chen CJ, Lin LC, Lu JJ. Detection of heterogeneous vancomycin-intermediate Staphylococcus aureus isolates using a combination of δ-hemolysis assay and Etest. Diagn Microbiol Infect Dis. 2015;81(4):246–50. https://doi.org/10.1016/j.diagmicrobio.2014.12.006Search in Google Scholar

42. Asakura K, Azechi T, Sasano H, Matsui H, Hanaki H, Miyazaki M, et al. Rapid and easy detection of low-level resistance to vancomycin in methicillin-resistant Staphylococcus aureus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One. 2018;13(13):e0194212. https://doi.org/10.1371/journal.pone.0194212Search in Google Scholar

43. Castro BE, Berrio M, Vargas ML, Carvajal LP, Millan LV, Rios R, et al. Detection of heterogeneous vancomycin intermediate resistance in MRSA isolates from Latin America. J Antimicrob Chemother. 2020;75(9):2424–31. https://doi.org/10.1093/jac/dkaa221Search in Google Scholar

44. Khokhlova OE, Hung WC, Wan TW, Iwao Y, Takano T, Higuchi W, et al. Healthcare- and community-associated methicillin-resistant Staphylococcus aureus (MRSA) and fatal pneumonia with pediatric deaths in Krasnoyarsk, Siberian Russia: unique MRSA’s multiple virulence factors, genome, and stepwise evolution. PLoS One. 2015;10(6):e0128017. https://doi.org/10.1371/journal.pone.0128017Search in Google Scholar

45. Wan TW, Khokhlova OE, Iwao Y, Higuchi W, Hung WC, Reva IV, et al. Complete circular genome sequence of successful ST8/SCCmecIV community-associated methicillin-resistant Staphylococcus aureus (OC8) in Russia: one-megabase genomic inversion, IS256’s spread, and evolution of Russia ST8-IV. PLoS One. 2016;11(10):e0164168. https://doi.org/10.1371/journal.pone.0164168Search in Google Scholar

46. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother. 1997;40(1):135–6. https://doi.org/10.1093/jac/40.1.135Search in Google Scholar

47. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet. 2001;357(9264):1225–40. https://doi.org/10.1016/s0140-6736(00)04403-2Search in Google Scholar

48. Jin J, Ito T, Hiramatsu K. Molecular epidemiological characterization of 46 vancomycin-intermediate Staphylococcus aureus strains isolated worldwide. Juntendo Med J. 2011;57:494–503. Japanese.Search in Google Scholar

49. Khokhlova O, Tomita Y, Hung WC, Takano T, Iwao Y, Higuchi W, et al. Elderly infection in the community due to ST5/SCCmecII methicillin-resistant Staphylococcus aureus (the New York/Japan clone) in Japan: Panton-Valentine leukocidin-negative necrotizing pneumonia. J Microbiol Immunol Infect. 2015;48(3):335–9. https://dx.doi.org/10.1016/j.jmii.2012.09.004Search in Google Scholar

50. Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet. 1997;350(9092):1670–3. https://doi.org/10.1016/S0140-6736(97)07324-8Search in Google Scholar

51. Katayama Y, Murakami-Kuroda H, Cui L, Hiramatsu K. Selection of heterogeneous vancomycin-intermediate Staphylococcus aureus by imipenem. Antimicrob Agents Chemother. 2009;53(8):3190–6. https://dx.doi.org/10.1128/AAC.00834-0Search in Google Scholar

52. Dominguez TJ. It’s not a spider bite, it’s community-acquired methicillin-resistant Staphylococcus aureus. J Am Board Fam Pract. 2004;17(3):220–6. https://dx.doi.org/10.3122/jabfm.17.3.220Search in Google Scholar

53. Takano T, Higuchi W, Yamamoto T. Superior in vitro activity of carbapenems over anti-methicillin-resistant Staphylococcus aureus (MRSA) and some related antimicrobial agents for community-acquired MRSA but not for hospital-acquired MRSA. J Infect Chemother. 2009;15(1):54–7. https://doi.org/10.1007/s10156-008-0665-5Search in Google Scholar

54. Krziwanek K, Luger C, Sammer B, Stumvoll S, Stammler M, Metz-Gercek S, et al. PVL-positive MRSA in Austria. Eur J Clin Micro-biol Infect Dis. 2007;26(12):931–5. https://dx.doi.org/10.1007/s10096-007-0391-4Search in Google Scholar

55. Harbarth S, François P, Shrenzel J, Fankhauser-Rodriguez C, Hugonnet S, Koessler T, et al. Community-associated methicillin-resistant Staphylococcus aureus, Switzerland. Emerg Infect Dis. 2005;11(6):962–5. https://dx.doi.org/10.3201/eid1106.041308Search in Google Scholar

56. Müller-Premru M, Strommenger B, Alikadic N, Witte W, Friedrich AW, Seme K, et al. New strains of community-acquired methicillin-resistant Staphylococcus aureus with Panton-Valentine leukocidin causing an outbreak of severe soft tissue infection in a football team. Eur J Clin Microbiol Infect Dis. 2005;24(12):848–50. https://dx.doi.org/10.1007/s10096-005-0048-0Search in Google Scholar

57. Faria NA, Oliveira DC, Westh H, Monnet DL, Larsen AR, Skov R, et al. Epidemiology of emerging methicillin-resistant Staphylococcus aureus (MRSA) in Denmark: a nationwide study in a country with low prevalence of MRSA infection. J Clin Microbiol. 2005;43(4):1836–42. https://dx.doi.org/10.1128/JCM.43.4.1836-1842.2005Search in Google Scholar

58. Berglund C, Mölling P, Sjöberg L, Söderquist B. Multilocus sequence typing of methicillin-resistant Staphylococcus aureus from an area of low endemicity by real-time PCR. J Clin Microbiol. 2005;43(9):4448–54. https://dx.doi.org/10.1128/JCM.43.9.4448-4454.2005Search in Google Scholar

59. Rossney AS, Shore AC, Morgan PM, Fitzgibbon MM, O’Connell B, Coleman DC. The emergence and importation of diverse geno-types of methicillin-resistant Staphylococcus aureus (MRSA) harboring the Panton-Valentine leukocidin gene (pvl) reveal that pvl is a poor marker for community-acquired MRSA strains in Ireland. J Clin Microbiol. 2007;45(8):2554–63. https://dx.doi.org/10.1128/JCM.00245-07Search in Google Scholar

60. Yamaguchi T, Okamura S, Miura Y, Koyama S, Yanagisawa H, Matsumoto T. Molecular Characterization of Community-Associated Methicillin-Resistant Staphylococcus aureus Isolated from Skin and Pus Samples of Outpatients in Japan. Microb Drug Resist. 2015;21(4):441–7. https://dx.doi.org/10.1089/mdr.2014.0153Search in Google Scholar

61. Indráková A, Mašlaňová I, Mrkva O, Bendíčková K, Vrbovská V, Doškař J, et al. Draft Genome Sequence of the Panton-Valentine Leucocidin-Producing Staphylococcus aureus Sequence Type 154 Strain NRL 08/001, Isolated from a Fatal Case of Necrotizing Pneumonia. Microbiol Resour Announc. 2019;8(47):e01299–19. https://dx.doi.org/10.1128/MRA.01299-19Search in Google Scholar

62. Orth D, Grif K, Erdenechimeg L, Battogtokh C, Hosbayar T, Strommenger B, et al. Characterization of methicillin-resistant Staphylococcus aureus from Ulaanbaatar, Mongolia. Eur J Clin Microbiol Infect Dis. 2006;25(2):104–7. https://doi.org/10.1007/s10096-006-0102-6Search in Google Scholar

63. Kardén-Lilja M, Ibrahem S, Vuopio-Varkila J, Salmenlinna S, Lyytikäinen O, Siira L, et al. Panton-Valentine leukocidin genes and staphylococcal chromosomal cassette mec types amongst Finnish community-acquired methicillin-resistant Staphylococcus aureus strains, 1997-1999. Eur J Clin Microbiol Infect Dis. 2007;26(10):729–33. https://dx.doi.org/10.1007/s10096-007-0334-0Search in Google Scholar

64. Takadama S, Nakaminami H, Aoki S, Akashi M, Wajima T, Ikeda M, et al. Prevalence of skin infections caused by Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in Japan, particularly in Ishigaki, Okinawa. J Infect Chemother. 2017;23(11):800–3. https://doi.org/10.1016/j.jiac.2017.04.016Search in Google Scholar

65. Ikeuchi K, Adachi E, Sasaki T, Suzuki M, Lim LA, Saito M, et al. An outbreak of USA300 MRSA among people with HIV in Japan. J Infect Dis. 2020:jiaa651. https://doi.org/10.1093/infdis/jiaa651Search in Google Scholar

66. Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 2002;99(11):7687–92. https://doi.org/10.1073/pnas.122108599Search in Google Scholar

67. Orii KO, Iwao Y, Higuchi W, Takano T, Yamamoto T. Molecular characterization of methicillin-resistant Staphylococcus aureus from a fatal case of necrotizing fasciitis in an extremely low-birth-weight infant. Clin Microbiol Infect. 2010;16(3):289–92. https://dx.doi.org/10.1111/j.1469-0691.2009.02806.xSearch in Google Scholar

68. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol. 2006;4(4):295–305. https://dx.doi.org/10.1038/nrmicro1384Search in Google Scholar

69. Lin YT, Tsai JC, Yamamoto T, Chen HJ, Hung WC, Hsueh PR, et al. Emergence of a small colony variant of vancomycin-intermediate Staphylococcus aureus in a patient with septic arthritis during long-term treatment with daptomycin. J Antimicrob Chemother. 2016;71(7):1807–14. https://dx.doi.org/10.1093/jac/dkw060Search in Google Scholar

70. Cao S, Huseby DL, Brandis G, Hughes D. Alternative evolutionary pathways for drug-resistant small colony variant mutants in Staphylococcus aureus. mBio. 2017;8(3):e00358–17. https://doi.org/10.1128/mBio.00358-17Search in Google Scholar

71. Al Ahmar R, Kirby BD, Yu HD. Pyrimidine biosynthesis regulates the small-colony variant and mucoidy in Pseudomonas aeruginosa through sigma factor competition. J Bacteriol. 2018;201(1):e00575–18. https://doi.org/10.1128/JB.00575-18Search in Google Scholar

72. Côté-Gravel J, Brouillette E, Malouin F. Vaccination with a live-attenuated small-colony variant improves the humoral and cell-mediated responses against Staphylococcus aureus. PLoS One. 2019;14(12):e0227109. https://doi.org/10.1371/journal.pone.0227109Search in Google Scholar

73. Cui L, Ma X, Sato K, Okuma K, Tenover FC, Mamizuka EM, et al. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol. 2003;41(1):5–14. https://dx.doi.org/10.1128/JCM.41.1.5-14.2003Search in Google Scholar

74. Chung DR, Baek JY, Kim HA, Lim MH, Kim SH, Ko KS, et al. First report of vancomycin-intermediate resistance in sequence type 72 community genotype methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2012;50(7):2513–4. https://dx.doi.org/10.1128/JCM.00590-12Search in Google Scholar

75. Shen P, Zhou K, Wang Y, Song J, Liu Y, Zhou Y, et al. High prevalence of a globally disseminated hypervirulent clone, Staphylococcus aureus CC121, with reduced vancomycin susceptibility in community settings in China. J Antimicrob Chemother. 2019;74(9):2537–43. https://dx.doi.org/10.1093/jac/dkz232Search in Google Scholar

76. Saito M, Katayama Y, Hishinuma T, Iwamoto A, Aiba Y, Kuwahara-Arai K, et al. «Slow VISA,» a novel phenotype of vancomycin resistance, found in vitro in heterogeneous vancomycin-intermediate Staphylococcus aureus strain Mu3. Antimicrob Agents Chemother. 2014;58(9):5024–35. https://doi.org/10.1128/AAC.02470-13Search in Google Scholar

77. Roch M, Clair P, Renzoni A, Reverdy M-E, Dauwalder O, Bes M, et al. Exposure of Staphylococcus aureus to subinhibitory concentrations of β-lactam antibiotics induces heterogeneous vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2014;58(9):5306–14. https://doi.org/10.1128/AAC.02574-14Search in Google Scholar

78. Howden BP, Peleg AY, Stinear TP. The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA. Infect Genet Evol. 2014;21:575–82. https://doi.org/10.1016/j.meegid.2013.03.047Search in Google Scholar

79. Matsuo M, Hishinuma T, Katayama Y, Hiramatsu K. A mutation of RNA polymerase β’ subunit (RpoC) converts heterogeneously vancomycin-intermediate Staphylococcus aureus (hVISA) into «slow VISA». Antimicrob Agents Chemother. 2015;59(7):4215–25. https://doi.org/10.1128/AAC.00135-15Search in Google Scholar

80. Matsuo M, Yamamoto N, Hishinuma T, Hiramatsu K. Identification of a Novel Gene Associated with High-Level β-Lactam Resistance in Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Strain Mu3 and Methicillin-Resistant S. aureus Strain N315. Antimicrob Agents Chemother. 2019;63(2):e00712–18. https://doi.org/10.1128/AAC.00712-18Search in Google Scholar

81. Haaber J, Friberg C, McCreary M, Lin R, Cohen SN, Ingmer H. Reversible antibiotic tolerance induced in Staphylococcus aureus by concurrent drug exposure. mBio. 2015;6(1):e02268–14. https://doi.org/10.1128/mBio.02268-14Search in Google Scholar

82. Katayama Y, Azechi T, Miyazaki M, Takata T, Sekine M, Matsui H, et al. Prevalence of slow-growth vancomycin nonsusceptibility in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2017;61(11):e00452–17. https://doi.org/10.1128/AAC.00452-17Search in Google Scholar

83. McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90(2):269–81.Search in Google Scholar

84. Lin LC, Chang SC, Ge MC, Liu TP, Lu JJ. Novel single-nucleotide variations associated with vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Infect Drug Resist. 2018;11:113–23. https://doi.org/10.2147/IDR.S148335Search in Google Scholar

85. Xu J, Pang L, Ma XX, Hu J, Tian Y, Yang YL, et al. Phenoty-pic and molecular characterisation of Staphylococcus aureus with reduced vancomycin susceptibility derivated in vitro. Open Med (Wars). 2018;13:475–86. https://doi.org/10.1515/med-2018-0071Search in Google Scholar

86. Gao C, Dai Y, Chang W, Fang C, Wang Z, Ma X. VraSR has an important role in immune evasion of Staphylococcus aureus with low level vancomycin resistance. Microbes Infect. 2019;21(8-9):361–7. https://doi.org/10.1016/j.micinf.2019.04.003Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo