1. bookVolume 48 (2018): Issue 1 (December 2018)
Journal Details
First Published
26 Feb 2008
Publication timeframe
4 times per year
Open Access

Towards implementation of a formation flying for efficient UAV operations

Published Online: 29 Mar 2019
Volume & Issue: Volume 48 (2018) - Issue 1 (December 2018)
Page range: 399 - 417
Journal Details
First Published
26 Feb 2008
Publication timeframe
4 times per year

A flight of a UAV formation is an efficient way to implement surveillance and reconnaissance operations. The usage of a few UAVs as a formation instead of a single vehicle allows creating a distributed network of sensors, which decreases the duration of flight missions and enlarges a total field of view. From a practical point of view, implementations of formation flights require taking into account several separate aspects of flight of UAV such as a quick take-off of several aircraft, aggregating all UAVs in the same space to create swarm and collective flight of the formation towards the area of a surveillance mission. The paper presents the results of researches and experiments carried out towards practical solutions to those aspects. A magnetic launcher is an excellent appliance to put UAV in the air, and its operation could be repeated quickly. Hence, it is ideal to be used in a formation flight. The leader-follower approach based on two-stage switching control is an effective method to aggregate UAVs in the same space while they are flying over large areas. Whereas, the decentralized control of aerial flocking can be used to achieve a coherent flight of UAV formation, which is able to self-organize. Results from simulations and experiments show the effectiveness of each presented aspect and prove their usability in the implementation of formation flights.


1. Ambroziak L., Gosiewski Z.: Two stage switching control for autonomous formation flight of unmanned aerial vehicles. Aerospace Science and Technology, 46, 2015: 221-22610.1016/j.ast.2015.07.015Search in Google Scholar

2. Bangash Z. A., Sanchez R. P., Ahmed A.: Aerodynamics of Formation Flight, Journal of Aircraft, Vol. 43, No. 4, July–August, 200610.2514/1.13872Search in Google Scholar

3. Basu P., Redi J., Shurbanov V.: Coordinated flocking of UAVs for improved connectivity of mobile ground nodes. Proceedings of the Military Communications Conference MILCOM 2004, Monterey, CA, USA, 31 October - 3 November 2004, IEEE Press: 1628–1634.Search in Google Scholar

4. Boskowic J.D., Sun Z., Song Y.D.: An adaptive reconfigurable formation flight control design. Proceedings of the American Control Conference, 2003: 284–289Search in Google Scholar

5. Cai J., Sun S. Wu.: UAVs Formation Flight Control Based on Behavior and Virtual Structure. AsiaSim 2012, Communications in Computer and Information Science 2012: 429-43810.1007/978-3-642-34387-2_49Search in Google Scholar

6. Cheng Z., Necsulescu D.S., Kim B., Sasiadek J.: Nonlinear control for UAV formation flying. Proceedings of the 17th World Congress of the International Federation of Automatic Control. Seoul, Korea, July 6–11, 2008: 791–79610.3182/20080706-5-KR-1001.00136Search in Google Scholar

7. Ciesluk J., Ambroziak L.: Vision system for formation flight of unmanned aerial vehicles. Group Flights and Launchers for UAVs. Ed. Z. Gosiewski. Bialystok University of Technology, 2013: 370–386 (in Polish)Search in Google Scholar

8. Falkowski K., Sibilski K.: Magnetic Levitation System for Take-off and Landing Airplane – Project GABRIEL. Proceedings of the 2013 CONSOL Conference in Rotterdam, 2013, https://www.comsol.com/paper/download/182061/falkowski_paper.pdfSearch in Google Scholar

9. Falkowski K., Sibilski K.: System take-off and landing with magnetic suspension – project GABRIEL. RUTMech, 30, 85(3/13), (DOI:10.7862/rm.2013.23), July-September, 2013: 249-25810.7862/rm.2013.23)-2013:249-258Open DOISearch in Google Scholar

10. Flack A., Ákos Zs., Nagy M., Vicsek T., Biro D.: Robustness of flight leadership relations in pigeons. Animal Behaviour 86(4), 2014: 723–73210.1016/j.anbehav.2013.07.005Search in Google Scholar

11. Galzi D. Shtessel Y.: UAV formations control using high order sliding modes. AIAA Meeting Papers Online. http://arc.aiaa.org/doi/pdfplus/10.2514/6.2005-6367, (DOI: 10.2514/6.2005-6367), 2005: AIAA 2005-6367 TP10.2514/6.2005-6367,(DOI:10.2514/6.2005-6367),2005:AIAA2005-6367TPOpen DOISearch in Google Scholar

12. Giulietti F., Pollini L., Innocenti M.: Autonomous formation flight. IEEE Control Systems Magazine, 2000, 20(6): 34–4410.1109/37.887447Search in Google Scholar

13. Gosiewski Z., Ambroziak L.: UAV autonomous formation flight experiment with Virtual Leader control structure. Solid State Phenomena. 198, 2013: 254–25910.4028/www.scientific.net/SSP.198.254Search in Google Scholar

14. Iglesias S., Mason W.H.: Optimum spanloads in formation flight. AIAA Meeting Papers Online. http://arc.aiaa.org/doi/pdfplus/10.2514/6.2002-258, (DOI: 10.2514/6.2002-258), 2002: AIAA 2002-0258 TP10.2514/6.2002-258,(DOI:10.2514/6.2002-258),2002:AIAA2002-0258TPOpen DOISearch in Google Scholar

15. Johnson N., Calise A.J.: Approaches to vision-based formation control. Proceedings of the IEEE Conference on Decision and Control, 200410.1109/CDC.2004.1430280Search in Google Scholar

16. Kondratiuk M., Gosiewski Z.: Laboratory and field tests of the magnetic coil launcher for micro aerial vehicles. Scientific aspects of unmanned mobile vehicle (Eds. Koruba Z., Krzysztofik I., and Stefański P.), Kielce University of Technology, 2014: 89-107Search in Google Scholar

17. Kondratiuk M.: Concept of the magnetic launcher for unmanned aerial vehicles of mass up to 25 kg. Proceedings of the 10th International conference: Mechatronics Systems and Materials: MSM’2014. Opole, 2014Search in Google Scholar

18. Kownacki C., Ołdziej D.: Fixed-wing UAVs Flock Control through Cohesion and Repulsion Behaviours Combined with a Leadership, International Journal of Advanced Robotic Systems, 13:36, 2016, (DOI: 10.5772/62249)10.5772/62249Open DOISearch in Google Scholar

19. Kownacki C., Ołdziej D.: Flocking Algorithm for Fixed-Wing Unmanned Aerial Vehicles. Advances in Aerospace Guidance, Navigation and Control. Springer, 2015: 415-43110.1007/978-3-319-17518-8_24Search in Google Scholar

20. Kushleyev A., Mellinger D., Powers C., Kumar V.: Towards a swarm of agile micro quadrotors. Autonomous Robots, 35(4), 2013: 287-30010.1007/s10514-013-9349-9Search in Google Scholar

21. Ładyżyńska-Kozdraś E., Sibilska-Mroziewicz A.M., Falkowski K.: Investigation of mechanical properties of a rigid body in magnetic levitation state. Challenges of Modern Technology, 6(1), e-ISSN 2353-4419, http://journal.young-scientists.eu, 2015: 23 – 27Search in Google Scholar

22. Li B., Liao X.H., Sun Z., Li Y.D., Song Y.F.: Robust autopilot for close formation flight of multi-UAVs. Proceedings of the Thirty-Eighth South-eastern Symposium SSST’98. IEEE System Theory, 2006: 294–298Search in Google Scholar

23. Li C.: Decentralized cooperative control for multivehicle without velocity measurement. Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, 200910.1109/CDC.2009.5399505Search in Google Scholar

24. Linorman N.H, Liu M.H.T.: Formation UAV flight control using virtual structure and motion synchronization. Proceedings of the American Control Conference, 2008: 1782–178710.1109/ACC.2008.4586750Search in Google Scholar

25. Low Ch.B., Ng Q.S.: A flexible virtual structure formation keeping control for fixed-wing UAVs. 9th IEEE International Conference on Control and Automation, Santiago, 19-21 December, 2011: 621-62610.1109/ICCA.2011.6137876Search in Google Scholar

26. McCammish C., Pachter M.D., Azzo J.J., Reyna V.: Optimal formation flight control. AIAA Meeting Papers Online. http://arc.aiaa.org/doi/pdfplus/10.2514/6.1996-3868, (DOI: 10.2514/6.1996-3868), 1996: AIAA 96-3868 TP10.2514/6.1996-3868,(DOI:10.2514/6.1996-3868),1996:AIAA96-3868TPOpen DOISearch in Google Scholar

27. Norman H.M., Le Liu, Hugh H.T.: Formation UAV Flight Control using Virtual Structure and Motion. Proceedings of the American Control Conference, June 11-13 2008, Seattle, USA: 1782-1787Search in Google Scholar

28. Pilz U., Popov A.P., Werner H.: Robust controller design for formation flight of quad-rotor helicopter. Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, 200910.1109/CDC.2009.5400593Search in Google Scholar

29. Quintero S.A.P., Collins G.E., Hespanha J.P.: Flocking with Fixed-Wing UAVs for Distributed Sensing: A Stochastic Optimal Control Approach. Proceedings of the American Control Conference (ACC). 17-19 June 2013, Washington DC: 2025-203110.1109/ACC.2013.6580133Search in Google Scholar

30. Ray R. J., Cobliegh B. R., Vachon M. J., Clinton St. J.: Flight Test Techniques Used to Evaluate Performance Benefits During Formation Flight, NASA/TP-2002-210730, Aug. 200210.2514/6.2002-4492Search in Google Scholar

31. Ray R. J., Cobliegh B. R., Vachon M. J., Clinton St, J. (2003): Flight test techniques used to evaluate performance benefits during formation flight, NASA/TP-2002-210730, 200210.2514/6.2002-4492Search in Google Scholar

32. Ren W., Beard R.W.: Virtual structure based spacecraft formation control with formation feedback. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, August 5-8, 2002: AIAA 2002-4963TP10.2514/6.2002-4963Search in Google Scholar

33. Reynolds C.W.: Flocks, herds and schools: a distributed behavioral model. Proceedings of ACM SIGGRAPH ’87, ACM SIGGRAPH Computer Graphics. Anaheim, USA, 27-31 July 1987. ACM Press: New York, USA10.1145/37401.37406Search in Google Scholar

34. Saari H., Aallos V-H., Holmlund Ch., Mäkynen J., Delauré D., Nackaerts K., Michiels B.: Novel hyperspectral imager for lightweight UAVs. Proc. SPIE 7668, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications VII, 766805 (April 24, 2010); DOI:10.1117/12.85009110.1117/12.850091Search in Google Scholar

35. Schumacher C.J., Singh S.N.: Nonlinear control of multiple UAVs in close-coupled formation flight. AIAA Meeting Papers Online. http://arc.aiaa.org/doi/pdfplus/10.2514/6.2000-4373, (DOI: 10.2514/6.2000-4373). 2000: AIAA 2000-4373 TP10.2514/6.2000-4373,(DOI:10.2514/6.2000-4373).2000:AIAA2000-4373TPOpen DOISearch in Google Scholar

36. Shao Z., Zhu X., Zhou Z., Wang Y.: A Nonlinear Control of 2-D UAVs Formation Keeping via Virtual Structures. Intelligent Robotics and Applications. Lecture Notes in Computer Science 8917, 2014: 420-43110.1007/978-3-319-13966-1_41Search in Google Scholar

37. Sibilska-Mroziewicz A. M., Ładużyńska-Kozdraś E., Falkowski K., Wolski K., Cedro W., Skalski A.: Experimental measurements of levitation forces generated by high-temperature supeconductors in magnetic fiels. Advances in Intelligent Systems and Computing, 393. Advanced in Mechatronic Systems (Eds. R. Jabłoński, and T. Brzeziński), Springer, ISSN 2194-5357, (DOI: 10.1007/978-3-319-23923-1), 2015: 255 – 26010.1007/978-3-319-23923-1),2015:255260Open DOISearch in Google Scholar

38. Sibilski K., Falkowski K., Wróblewski W., Majka A.: Ground System Specification and Development to Study the GABRIEL Concept; Deliverable D4.4 Integrated Ground and on-Board system for Support of the Aircraft Safe Take-off and Landing – GABRIEL, EU project number 284884, July 2014Search in Google Scholar

39. Stipanowić D.M., Inhalan G., Teo R., Tomlin C.J.: Decentralized overlapping control of formation of unmanned aerial vehicles. Automatica, 2004(40): 1285–129610.1016/j.automatica.2004.02.017Search in Google Scholar

40. Tokekar P., Hook V., Mulla D., Isler V.: Sensor planning for a symbiotic UAV and UGV system for precision agriculture. Proceedings of the International Conference on Intelligent Robots and Systems, IROS, 2013: 5321–532610.1109/IROS.2013.6697126Search in Google Scholar

41. Turpin M., Michael N., Kumar V.: Decentralized formation control with variable shapes for aerial robots. Proceedings of the IEEE International Conference on Robotics and Automation: 2012: 23–3010.1109/ICRA.2012.6225196Search in Google Scholar

42. Vachon M. J., Ray R. J., Walsh K. R., Ennix K.: F/A-18 Performance Benefits Measured During Autonomous Formation Flight Project, NASA/TM-2003-210734, Sept. 200310.2514/6.2002-4491Search in Google Scholar

43. Vásárhelyi G., Virágh Cs, Somorjai G., Tarcai N., Szörényi-Nepusz T.T., Vicsek T.: Outdoor flocking and formation flight with autonomous aerial robots. Proceeding of the IEEE International Conference on Intelligent Robots and Systems (IROS 2014), IEEE/RSJ International Conference., Chicago IL, 14-18 September 2014: 3866–387310.1109/IROS.2014.6943105Search in Google Scholar

44. Wan S., Campa G., Napolitano M.T., Seanor B., Yu Gu.: Design of formation control laws for research aircraft models. AIAA Meeting Papers Online. http://arc.aiaa.org/doi/pdf/10.2514/6.2003-5730. 2003: AIAA 2003-5730 TP10.2514/6.2003-5730.2003:AIAA2003-5730TPOpen DOISearch in Google Scholar

45. Weimerskirch J.M., Clerquin P.Y., Joraskova A.S.: Energy saving in flight formation. Nature 413(6857), 2001: 697–69810.1038/3509967011607019Search in Google Scholar

46. Williamson W.R., Abdel-Hafez M.F., Rhee I., Song E.J., Wolfe J.D., Chichka J.D., Speyer J.L.: An instrumentation system applied to formation flight. IEEE Transaction Control Systems Technol. 15(1), 2007: 75–8510.1109/TCST.2006.883241Search in Google Scholar

47. Xingping Ch., Serrani A., Ozbay H.: Control of leader-follower formations of terrestrial UAVs Proceedings. 42nd IEEE Conference on Decision and Control, 9-12 December 2003: 498-503Search in Google Scholar

48. Yu B.C., Dong X., Shi Z.Y., Zhong Y.S.: Formation control for quadrotor swarm system: algorithms and experiments. Proceedings of the 32nd Chinese Control Conference, 2013: 7099–7104Search in Google Scholar

49. Yun B., Chen B.M.K., Lum K.Y., Lee T.H., A leader-follower formation flight control scheme for UAV helicopters. IEEE International Conference on Automation and Logistics, 1-3 September 2008: 39-44Search in Google Scholar

50. Zhou G., Li C., Penggen C.: Unmanned aerial vehicle (UAV) real-time video registration for forest fire monitoring. Proceedings of the Geoscience and Remote Sensing Symposium, IGARSS’05, 2005:1803–1806Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo