1. bookVolume 45 (2018): Issue 1 (March 2018)
Journal Details
License
Format
Journal
eISSN
2083-4608
First Published
26 Feb 2008
Publication timeframe
4 times per year
Languages
English
access type Open Access

Markov Reliability Model for Heat Meters

Published Online: 29 Oct 2018
Volume & Issue: Volume 45 (2018) - Issue 1 (March 2018)
Page range: 83 - 96
Journal Details
License
Format
Journal
eISSN
2083-4608
First Published
26 Feb 2008
Publication timeframe
4 times per year
Languages
English
Abstract

The reliability of thermal energy meters is analysed using the Markov model which describes the operation of these meters in a large number of apartments and offices by a media accounting company. The data has been extracted from a relational database storing information on the operation, installation and exchange of these measures from the last 10 years. The built Markov model turned out to be ergodic, which allowed determining its limiting distribution. In addition, the probability distributions for the cumulated consumption were determined in the work - separately for all meters and meters’ failures.

Keywords

[1] K. Tawackolian, O. Büker, J. Hogendoorn, and T. Lederer, Calibration of an ultrasonic flow meter for hot water, Flow Meas. Instrum., vol. 30, pp. 166–173, 2013.10.1016/j.flowmeasinst.2012.05.003Search in Google Scholar

[2] E. Macha, Niezawodność maszyn, vol. 9932, no. 237. 2001.Search in Google Scholar

[3] F. Grabski and J. Jaźwiński, Funkcje o losowych argumentach w zagadnieniach niezawodności, bezpieczeństwa i logistyki. Warszawa: Wydawnictwa Komunikacji i Łączności, 2009.Search in Google Scholar

[4] V. Rykov, Reliability of Engineering Systems and Technological Risks. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016.10.1002/9781119347194Search in Google Scholar

[5] D. J. Smith, Reliability, Maintainability and Risk, vol. 8. 2011.Search in Google Scholar

[6] X. C. and Y. C. He Ren, Reliability Based Aircraft Maintenance Optimization and Application. Academic Press is an imprint of Elsevier, 2017.Search in Google Scholar

[7] E. Bradley, Reliability Engineering - A Life Cycle Approach. CRC Press Taylor & Francis Group, 2017.10.1201/9781315367422Search in Google Scholar

[8] H. Catherine, L. Nikolaos, M. Mounir, and N. Mikhail, Mathematical Methods in Survival Analysis, Reliability and Quality of Life. London, UK: ISTE, 2008.Search in Google Scholar

[9] S. Mikulski and A. Tomczewski, Ocena metod wyznaczania współczynników rozkładu Weibulla w zagadnieniach energetyki wiatrowej, Electr. Eng., no. 87, 2016.Search in Google Scholar

[10] G. George; and Y. Q. Zhang, Discrete-Time Markov Chains, vol. 55. New York: Springer-Verlag, 2005.Search in Google Scholar

[11] A. Lisnianski, I. Frenkel, A. K. Editors, and A. Karagrigoriou, Recent Advances in Multi-State Systems Reliability. Cham: Springer International Publishing, 2018.10.1007/978-3-319-63423-4Search in Google Scholar

[12] O. Haggstrom, Finite Markov Chains and Algorithmic Applications, 2002.10.1017/CBO9780511613586Search in Google Scholar

[13] P. Brémaud, Discrete Probability Models and Methods, vol. 78. Cham: Springer International Publishing, 2017.10.1007/978-3-319-43476-6Search in Google Scholar

[14] F. Grabski, Semi-markowskie modele niezawodności i eksploatacji. Warszawa: Instytut Badań Systemowych PAN, 2002.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo