1. bookVolume 14 (2021): Issue 1-2 (April 2021)
Journal Details
License
Format
Journal
First Published
25 Apr 2013
Publication timeframe
2 times per year
Languages
English
access type Open Access

The Potential Use of Osl Properties of Quartz in Investigating Fluvial Processes on the Catchment of River Mureş, Romania

Published Online: 21 May 2021
Page range: 58 - 67
Received: 15 Mar 2021
Accepted: 23 Apr 2021
Journal Details
License
Format
Journal
First Published
25 Apr 2013
Publication timeframe
2 times per year
Languages
English
Abstract

To understand the functioning of fluvial systems it is important to investigate dynamics of sediment transport and the source of sediments. In case of reconstructing past processes these studies must be accompanied by the numerical dating of sediment samples. In this respect optically stimulated luminescence is a widely used technique, by which the time of sediment deposition can be directly dated. Recently, in various fluvial environments it has been shown that certain luminescence properties of minerals, and especially that of quartz, can be applied as indicators of fluvial erosion and/or sediment provenance. These properties are residual luminescence (or residual dose) and luminescence sensitivity of quartz grains. However, the values of the parameters above are affected by various factors, the importance of which is under debate. The present study therefore aims to assess these factors along a ~560 km long reach of River Mureş (Maros) a relatively large river with a compound surface lithology on its catchment. The research focused on the sandy fraction of modern sediments, collected from the main river and from three tributaries alike. This way not only longitudinal downstream changes, but the influence of tributaries could also be studied. Based on the data, both investigated parameters show a great variation, which can be attributed to the lithological differences of subcatchments and geomorphological drivers, such as erosional activity and potential number of sedimentary cycles, and human activity. However, relationships are not entirely clear and are influenced by the maximum grain size of the samples investigated, and the recycling of previously laid deposits with different properties. Still, when performing detailed dating studies, and tracing sediments from certain parts of the catchment luminescence properties can be a useful tool in the future.

Keywords

Aitken M. J. 1998. An Introduction to Optical Dating. Oxford University Press. London. Search in Google Scholar

Baranyi V., Bakrač K., Krizmanić K., Botka D., Tóth E., Magyar I. 2021. Paleoenvironmental changes and vegetation of the Transylvanian Basin in the early stages of Lake Pannon (late Miocene, Tortonian). Review of Palaeobotany and Palynology 284, 104340. DOI: 10.1016/j.revpalbo.2020.104340 Search in Google Scholar

Bartyik T., Magyar G., Filyó D., Tóth O., Blanka-Végi V., Kiss T., Markovic S., Persoiu I., Gavrilov M., Mezősi G., Sipos Gy. 2021. Spatial differences in the luminescence sensitivity of quartz extracted from Carpathian Basin fluvial sediments. Quaternary Geochronology 64, 101166. DOI: 10.1016/j.quageo.2021.101166 Search in Google Scholar

Berger G. W. 1990. Effectiveness of natural zeroing of the thermoluminescence in sediments. Journal of Geophysical Research 95 (B8), 12375–12397. DOI: 10.1029/JB095iB08p12375 Search in Google Scholar

Bojar A.-V., Bojar H.-P., Ottner F., Grigorescu D. 2010. Heavy mineral distributions of Maastrichtian deposits from the Haţeg basin, South Carpathians: Tectonic and palaeogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 293 (3-4), 319–328. DOI: 10.1016/j.palaeo.2009.10.002 Search in Google Scholar

Borsy Z. 1989. Az Alföld hordalékkúpjainak negyedidőszaki fejlődéstörténete (The Quaternary development of the Great Hungarain Plain). Földrajzi Értesítő 38 (3-4), 211–224. (in Hungarian) Search in Google Scholar

Bøtter-Jensen L., McKeever S. W. S., Wintle A. G. 2003. Optically Stimulated Luminescence Dosimetry. Elsevier Science, The Netherlands. ISBN: 0-444-50684-5 Search in Google Scholar

Chithambo M. L., Preusser F., Ramseyer K., Ogundare F.O. 2007. Time-resolved luminescence of low sensitivity quartz from crystalline rocks. Radiation Measurements 42 (2), 205–212. DOI: 10.1016/j.radmeas.2006.07.005 Search in Google Scholar

Collins A. L., Blackwell M., Boeckx P. et al. 2020. Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. Journal of Soils Sediments 20, 4160–4193. DOI: 10.1007/s11368-020-02755-4 Search in Google Scholar

Fiebig M., Preusser F. 2007. Investigating the amount of zeroing in modern sediments of River Danube, Austria. Quaternary Geochronology 2 (1), 143–149. DOI: 10.1016/j.quageo.2006.09.001 Search in Google Scholar

Fitzsimmons E., Edward J. R., Timothy T. B. 2010. OSL dating of southeast Australian quartz: A preliminary assessment of luminescence characteristics and behaviour. Quaternary Geochronology 5 (2-3), 91–95. DOI: 10.1016/j.quageo.2009.02.009 Search in Google Scholar

Fitzsimmons E. 2011. An assessment of the luminescence sensitivity of Australian quartz with respect to sediment history. Geochronometria 38 (3), 199–208. DOI: 10.2478/s13386-011-0030-9 Search in Google Scholar

Fryirs K., Gore D. 2013. Sediment tracing in the upper Hunter catchment using elemental and mineralogical compositions: Implications for catchment-scale suspended sediment (dis)connectivity and management. Geomorphology 193, 112–121. DOI: 10.1016/j.geomorph.2013.04.010 Search in Google Scholar

Gemmell A. M. D. 1988. Zeroing of the TL signal in sediment undergoing fluvioglacial transport. An example from Austerdalen, Western Norway. Quaternary Science Reviews 7(3-4), 339–345. DOI: 10.1016/0277-3791(88)90026-1 Search in Google Scholar

Gliganic L. A., Cohen T. J., Meyer M., Molenaar A. 2017. Variations in luminescence properties of quartz and feldspar from modern fluvial sediments in three rivers. Quaternary Geochronology 41, 70–82. DOI: 10.1016/j.quageo.2017.06.005 Search in Google Scholar

Godfrey-Smith D. I., Huntley D. J., Chen W. H. 1988. Optical dating studies of quartz and feldspar sediment extracts. Quaternary Science Review 7 (3-4), 373–380. DOI: 10.1016/0277-3791(88)90032-7 Search in Google Scholar

Gray H. J., Jain M., Sawakuchi A. O., Mahan S. A., Tucker G. E. 2019. Luminescence as a sediment tracer and provenance tool. Reviews of Geophysics 57 (3), 987–1017. DOI: 10.1029/2019RG000646 Search in Google Scholar

Guralnik B., Ankjærgaard J. M., Murray A. S., Müller A., Wälle M., Lowick S. E., Preusser F., Rhodes E. J., Wu T.-S., Herman F. 2015. OSL-thermochronometry using bedrock quartz: a note of caution. Quaternary Geochronology 25, 37–48. DOI: 10.1016/j.quageo.2014.09.001 Search in Google Scholar

Harta geologică a R. S. România 1967. sc. 1:200.000, Institutul Geologic, Bucureşti. Search in Google Scholar

Iancu V., Seghedi A. 2017. The South Carpathians: Tectono-Metamorphic Units related to Variscan and Pan-African inheritance. Geo-Eco-Marina 23, 245–262. DOI: 10.5281/zenodo.1197110 Search in Google Scholar

Kiss T., Sümeghy B., Hernesz P., Sipos Gy., Mezősi G. 2013. Az Alsó-Tisza menti ártér és a Maros hordalékkúp késő-pleisztocén és holocén fejlődéstörténete. (Late Pleistocene and Holocene development of the Lower Tisza floodplain and the alluvial fan of the River Maros). Földrajzi Közlemények 137, 269–277. (in Hungarian) Search in Google Scholar

Kiss T., Sümeghy B., Sipos Gy. 2014. Late Quaternary paleodrainage reconstruction of the Maros River alluvial fan. Geomorphology 204, 49–60. DOI 10.1016/j.geomorph.2013.07.028 Search in Google Scholar

Kounov A., Schmid M. S. 2013. Fission-track constraints on the thermal and tectonic evolution of the Apuseni Mountains (Romania). International Journal of Earth Sciences 102, 207–233. DOI: 10.1007/s00531-012-0800-5 Search in Google Scholar

Laczay I. 1975. A Maros vízgyűjtője és vízrendszere (The catchment area and water system of the Mures). In: Csoma, J., Laczay, I. (ed.). Vízrajzi Atlasz Sorozat 19. kötet. Maros 1. fejezet. Hidrográfia, geomorfológia. Budapest, 4–6. (in Hungarian) Search in Google Scholar

Li S. H., Wintle A. G. 1991. Sensitivity changes of luminescence signals from colluvial sediments after different bleaching procedures. Ancient TL 9, 50–54. Search in Google Scholar

Li S. H., Wintle A. G. 1992. Luminescence sensitivity change due to bleaching of sediments. Nuclear Tracks and Radiation Measurements 20 (4), 567–573. DOI: 10.1016/1359-0189(92)90006-H Search in Google Scholar

Lü T., Sun J. 2011. Luminescence sensitivities of quartz grains from eolian deposits in northern China and their implications for provenance. Quaternary Research 76 (2), 181–189. DOI: 10.1016/j.yqres.2011.06.015 Search in Google Scholar

Mauz B., Bode T., Mainz E., Blanchard H., Hilger W., Dikau R., Zöller L. 2002. The luminescence dating laboratory at the University of Bonn: Equipment and procedures. Ancient TL 20, 53–61. Search in Google Scholar

Pál-Molnár E., Batki A., Ódri Á., Kiss B., Almási E. 2015. Geochemical implications for the magma origin of granitic rocks from the Ditrău Alkaline Massif (Eastern Carpathians, Romania). Geologia Croatica 68 (1), 51–66. DOI: 10.4154/GC.2015.04 Search in Google Scholar

Pietsch T. J., Olley J. M., Nanson G. C. 2008. Fluvial transport as a natural luminescence sensitiser of quartz. Quaternary Geochronology 3 (4), 365–376. DOI: 10.1016/j.quageo.2007.12.005 Search in Google Scholar

Preusser F., Ramseyer K., Sclücheter C. 2006. Characterisation of low OSL intensity quartz from New Zealand Alps. Radiation Measurements 41 (7-8), 871–877. DOI: 10.1016/j.radmeas.2006.04.019 Search in Google Scholar

Preusser F., Makaiko L. Chithambo, Götte T., Martini M., Ramseyer K., Sendezera J. E., Susino J. G., Wintle A. G. 2009. Quartz as a natural luminescence dosimeter. Earth-Science Reviews 97 (1), 184–214. DOI: 10.1016/j.earscirev.2009.09.006 Search in Google Scholar

Rendell H. M., Webster S. E., Sheffer N. L. 1994. Underwater bleaching of signals from sediment grains: New experimental data. Quaternary Science Reviews 13 (5-7), 433–435. DOI: 10.1016/0277-3791(94)90055-8 Search in Google Scholar

Sawakuchi A. O., Blair M. W., DeWitt R., Faleiros F. M., Hyppolito T. N., Guedes C. C. F. 2011. Thermal history versus sedimentary history: OSL sensitivity of quartz grains extracted from rocks and sediments. Quaternary Geochronology 6, 261–272. DOI: 10.1016/j.quageo.2010.11.002 Search in Google Scholar

Sawakuchi A. O., Guedes C. C. F., DeWitt R., Giannini P. C. F., Blair M. W., Nascimento Jr. D. R., Faleiros F. M. 2012. Quartz OSL sensitivity as a proxy for storm activity on the southern Brazilian coast during the Late Holocene. Quaternary Geochronology 13, 92–102. DOI: 10.1016/j.quageo.2012.07.002 Search in Google Scholar

Sawakuchi A. O., Jain M., Mineli T. D., Nogueira L., Bertassoli Jr. D. J., Häggi C., Sawakuchi H. O., Pupi F. N., Grohmann C. H., Chiessi C. M., Zabel M., Mulitza S., Mazoca C. E. M., Cunha D. F. 2018. Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin. Earth and Planet. Sci. Lett. 492, 152–162. DOI: 10.1016/j.epsl.2018.04.006 Search in Google Scholar

Sawakuchi A. O., Rodrigues F. C. G., Mineli T. D., Mendes V. R., Melo D. B., Chiessi C. M., Giannini P. C. F. 2020. Optically Stimulated Luminescence Sensitivity of Quartz for Provenance Analysis. Methods and Protocols 3 (1), 6. DOI: 10.3390/mps3010006 Search in Google Scholar

Schumm, S. A. 1979. Geomorphic thresholds: the concept and its applications. Transactions of the Institute of British Geographers 4 (4), 485–515. DOI: 10.2307/622211 Search in Google Scholar

Sharma S. K., Chawla S., Sastry M. D., Gaonkar M., Mane S., Balaram V., Singhvi A. K. 2017. Understanding the Reasons for Variations in Luminescence Sensitivity of Natural Quartz Using Spectroscopic and Chemical Studies. Proceedings of the Indian National Science Academy 83 (3), 645–653. DOI: 10.16943/ptinsa/2017/49024 Search in Google Scholar

Silye L. 2015. Sarmatian foraminiferal assemblages from southern Transylvanian Basin and their significance for the reconstruction of depositional environments. Cluj-Napoca: Presa Universitară Clujeană. ISBN: 978-973-595-852-7 Search in Google Scholar

Sipos Gy., Kiss T., Tóth O. 2016. Constraining the age of floodplain levels along the lower section of river Tisza, Hungary. Journal of Environment Geography 9 (1-2), 39–44. DOI: 10.1515/jengeo-2016-0006 Search in Google Scholar

Urdea P., Sipos Gy., Kiss T., Onaca A. 2012. The Maros/Mureş (A Maros) In: Sipos. Gy. (ed.) Past, Present, Future of the Maros/Mureş River. (A Maros folyó múltja, jelene, jövője). Szegedi Tudományegyetem, Természeti Földrajzi és Geoinformatikai Tanszék, Universitatea de Vest din Timişoara, Departamentul de Geografie. 159–167 Search in Google Scholar

Smedley R. K., Buylaert J.-P., Ujvari G. 2019. Comparing the accuracy and precision of luminescence ages for partially bleached sediments using single grains of K-feldspar and quartz. Quaternary Geochronology 53, 101007. DOI: 10.1016/j.quageo.2019.101007 Search in Google Scholar

Tóth O., Sipos G., Kiss T., Bartyik T. 2017. Variation of OSL residual doses in terms of coarse and fine grain modern sediments along the Hungarian section of the Danube. Geochronometria 44 (1), 319–330. DOI: 10.1515/geochr-2015-0079 Search in Google Scholar

Walling D. E. 2013. The evolution of sediment source fingerprinting investigations in fluvial systems. Journal of Soils Sediments 13, 1658–1675. DOI: 10.1007/s11368-013-0767-2 Search in Google Scholar

Wintle A. G., Murray A. S. 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369–391. DOI: 10.1016/j.radmeas.2005.11.001 Search in Google Scholar

Wintle A. G., Adamiec G. 2017. Optically stimulated luminescence. Radiation Measurements signals from quartz: A review. Radiation Measurements 98, 10–33. DOI: 10.1016/j.radmeas.2017.02.003 Search in Google Scholar

Zheng C. X., Zhou L. P., Qin J. T. 2009. Difference in luminescence sensitivity of coarse-grained quartz from deserts of northern China. Radiation Measurements 44 (5-6), 534–537. DOI: 10.1016/j.radmeas.2009.02.013 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo