1. bookVolume 13 (2020): Issue 1-2 (April 2020)
Journal Details
License
Format
Journal
First Published
25 Apr 2013
Publication timeframe
2 times per year
Languages
English
access type Open Access

Identification of Riparian Vegetation Types with Machine Learning Based on LiDAR Point-Cloud Made Along the Lower Tisza’s Floodplain

Published Online: 29 May 2020
Page range: 53 - 61
Received: 07 Apr 2020
Accepted: 05 May 2020
Journal Details
License
Format
Journal
First Published
25 Apr 2013
Publication timeframe
2 times per year
Languages
English

The very dense floodplain vegetation on the artificially confined floodplains results in decreased flood conveyance, thus increase in flood levels and flood hazard. Therefore, proper floodplain management is needed, which must be supported by vegetation assessment studies. The aims of the paper are to introduce the method and the results of riparian vegetation classification of a floodplain area along the Lower Tisza (Hungary) based on automatized acquisition of airborne LiDAR survey. In the study area 15x15 m large training plots (voxels) were selected, and the statistical parameters of their LiDAR point clouds were determined. Applying an automatized parameter selection and 10-fold cross-validation he most suitable decision tree was selected, and following a series of classification steps the training plots were classified. Based on the decision tree all the pixels of the entire study area were analysed and their vegetation types were determined. The classification was validated by field survey. On the studied floodplain area the accuracy of the classification was 83%.

Keywords

Abernethy, B., Rutherfurd, I.D. 1998. Where along a river’s length will vegetation most effectively stabilise stream banks? Geomorphology 23, 55–75. DOI: 10.1016/s0169-555x(97)00089-5Search in Google Scholar

Bengio, Y., Grandvalet, Y. 2004. No Unbiased Estimator of the Variance of K-Fold Cross-Validation. Journal of Machine Learning Research 5, 1089–1105.Search in Google Scholar

Brooks, G.R. 2005. Overbank deposition along the concave side of the Red River meanders, Manitoba, and its geomorphic significance. Earth Surface Processes and Landforms 30, 1617–1632. DOI: 10.1002/esp.1219Search in Google Scholar

Corenblit, D., Tabacchi, E., Steiger, J., Gurnell, A.M. 2007. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth-Science Reviews 84, 56–86. DOI: 10.1016/j.earscirev.2007.05.004Search in Google Scholar

Geerling, G.W., Kater, E., van den Brink, C., Baptist, M.J., Regas, A.M.J., Smits, A.J.M. 2008. Nature rehabilitation by floodplain excavation: The hydraulic effect of 16 years of sedimentation and vegetation succession along the Waal River, NL. Geomorphology 99, 317–328. DOI: 10.1016/j.geomorph.2007.11.011Search in Google Scholar

Grabmeier, J. L., Lambe, L. A. 2007. Decision trees for binary classification variables grow equally with the Gini impurity measure and Pearson’s chi-square test. International Journal of Business Intelligence and Data Mining 2(2), 213. DOI:10.1504/ijbidm.2007.013938Search in Google Scholar

Heurich, M., Thoma, F. 2008. Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagus sylvatica) and Norway spruce (Picea abies) forests. Forestry 81, 645–661. DOI: 10.1093/forestry/cpn038Search in Google Scholar

Hudak, A., Crookston, N., Evans, J., Hall, D., Falkowski, M. 2008. Nearest neighbour imputation of species-level, plot-scale forest structure attributes from lidar data. Remote Sensing of Environment 112, 2232–2245. DOI: 10.1016/j.rse.2007.10.009Search in Google Scholar

Jalonen, J., Järvelä, J., Virtanen, J.P., Vaaja, M., Kurkela, M., Hyyppä, H. 2015. Determining Characteristic Vegetation Areas by Terrestrial Laser Scanning for Floodplain Flow Modelling. Water 7(2), 420–437. DOI: 10.3390/w7020420Search in Google Scholar

Jung, S.E., Kwak, S.A., Park, T., Lee, W.K, Yoo, S. 2011. Estimating Crown Variables of Individual Trees Using Airborne and Terrestrial Laser Scanners. Remote Sensing 3, 2346–2363. DOI: 10.3390/rs3112346Search in Google Scholar

Kiss, T., Fiala, K., Sipos, Gy., Szatmári, G. 2019b. Long-term hydrological changes after various river regulation measures: are we responsible for flow extremes? Hydrology Research 50(2), 417–430. DOI: 10.2166/nh.2019.095Search in Google Scholar

Kiss, T., Nagy, J., Fehérváry, I., Vaszkó, Cs. 2019a. (Mis)management of floodplain vegetation: The effect of invasive species on vegetation roughness and flood levels. Science of the Total Environment 686, 931–945. DOI: 10.1016/j.scitotenv.2019.06.006Search in Google Scholar

Kiss, T., Sándor, A. 2009. Land-use changes and their effect on floodplain aggradation along the Middle-Tisza River, Hungary. AGD Landscape and Environment 3(1), 1–10.Search in Google Scholar

Kovács, S., Váriné Szöllősi, I. 2003. A Vásárhelyi Terv Továbbfejlesztését megalapozó hidrológiai és hullámtér hidraulikai vizsgálatok eredményei a Közép-Tiszán. MHT XXI. 2/12. 1–11.Search in Google Scholar

Laes, D., Reutebuch, S., McGaughey, B., Maus, P., Mellin, T., Wilcox, C., Anhold, J., Finco, M., Brewer, K. 2008. Practical lidar acquisition considerations for forestry applications. RSAC-0111-BRIEF1. Salt Lake City, UT: U.S. Department of Agriculture, Forest Service, Remote Sensing Applications Center. 32 p.Search in Google Scholar

Manners, R., Schmidt, J., Wheaton, M. J. 2013. Multiscalar model for the determination of spatially explicit riparian vegetation roughness. Journal of Geophysical Research: Earth Surface 118, 65–83. DOI: 10.1029/2011jf002188Search in Google Scholar

McGaughey, R. 2018. Users Manual of Fusion/LDV: Software for LIDAR Data Analysis and Visualization. United States Department of Agriculture, Forest Service, Pacific Northwest Research Station.Search in Google Scholar

Naesset, E., Gobakken, T., Holmgren, J., Hyyppa, J., Maltamo, M., Nilsson, M., Olsson, H., Persson, A., Doderman, U. 2004. Laser scanning of forest resources: the Nordic experience. Scandinavian. Journal of Forest Research 19, 482–499. DOI: 10.1080/02827580410019553Search in Google Scholar

Nagy, J., Kiss, T., Fiala, K. 2018. Hullámtér-feltöltődés vizsgálata az Alsó-Tisza mentén. II. Folyóhátak (parti hátak) feltöltődését befolyásoló tényezők. Hidrológiai Közlöny 98(1), 33–40.Search in Google Scholar

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12(85), 2825–2830. DOI: 10.3389/fninf.2014.00014Search in Google Scholar

Rátky, I., Farkas, P. 2003. A növényzet hatása a hullámtér vízszállító képességére. Vízügyi Közl. 85(2), 246–264.Search in Google Scholar

Schaffer, C. 1993. Overfitting Avoidance as Bias. Machine Learning 10, 153–178. DOI: 10.1007/bf00993504Search in Google Scholar

Steiger, J, Gurnell, A.M., Ergenzinger, P., Snelder, D.D. 2001. Sedimentation in the riparian zone of an incising river. Earth Surf. Process. Landforms 26, 91–108. DOI: 10.1002/1096-9837(200101)26:1<91::aidesp164>3.0.co;2-uSearch in Google Scholar

Vetter, M., Höfle, B., Hollaus, M., Gschöpf, C., Mandlburger, G., Pfeifer, N. 2011. Vertical vegetation structure analysis and hydraulic roughness determination using dense ALS point cloud data–a voxel based approach. Int. Arch. Photogr. Remote Sens. Spat. Inf. Sci. 38(5), 200–206. DOI: 10.5194/isprsarchives-xxxviii-5-w12-265-2011Search in Google Scholar

Zellei, L., Sziebert, J. 2003. Árvizi áramlásmérések tapasztalatai a Tiszán. In: Szlávik L. (szerk.): Elemző és módszertani tanulmányok az 1998-2001. évi ár- és belvizekről. Vízügyi Közlemények különszám 4, 133–144.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo