[[1] G. N. Ramachandran, A. V. Lakshminarayanan, Three-dimensional reconstruction from radio-graphs and electron micrographs: II. Application of convolutions instead of Fourier transforms, Proc. Nat. Acad. Sci. of USA, vol. 68, 1971, pp. 2236–2240.10.1073/pnas.68.9.22363893925289381]Search in Google Scholar
[[2] R. M. Lewitt, Reconstruction algorithms: transform methods, Proc. of the IEEE, vol. 71, 1983, pp. 390–408.10.1109/PROC.1983.12597]Search in Google Scholar
[[3] J. D. Mathews et al., Cancer risk in 680 peope expose to computed tomography scans in childhood or adolescent: data inkage study of 11 million Australians, British Medical Journal, f2360, 2013, pp. 346-360.10.1136/bmj.f2360366061923694687]Search in Google Scholar
[[4] K. Sauer, C. Bouman, A local update strategy for iterative reconstruction from projections, IEEE Tran. Signal Proc., vol. 41, 1993, pp. 534–548.10.1109/78.193196]Search in Google Scholar
[[5] C. A. Bouman, K. Sauer, A unified approach to statistical tomography using coordinate descent optimization, IEEE Tran. Image Proc., vol. 5, 1996, pp. 480–492.10.1109/83.49132118285133]Search in Google Scholar
[[6] Ding Q., Long Y., Zhang X., Fessler J.A.: Modeling mixed Poisson-Gaussian noise in statistical image reconstruction for x-ray CT. In: Proc. of the 4th International Conference on Image Formation in X-Ray Computed Tomography, Bamberg, Germany, 399–402 (2016)]Search in Google Scholar
[[7] Geyer, L.L., et al.: State of the art: iterative CT reconstruction techniques. Radiology 276, 339–357 (2017)10.1148/radiol.201513276626203706]Search in Google Scholar
[[8] J. -B Thibault, K. D. Sauer, C. A. Bouman, J. Hsieh, A three-dimensional statistical approach to improved image quality for multislice helical CT, Med. Phys., vol. 34, 2007, pp. 4526–4544.10.1118/1.278949918072519]Search in Google Scholar
[[9] B. DeMan, S. Basu, Distance-driven projection and backprojection in three dimensions, Phys. Med. Biol., vol. 49, 2004, pp. 2463–2475.10.1088/0031-9155/49/11/02415248590]Search in Google Scholar
[[10] Y. Zhou, J.-B Thibault, C.A. Bouman, J. Hsieh, K.D. Sauer, Fast model-based x-ray CT reconstruction using spatially non-homogeneous ICD optimization, IEEE Tran. Image Proc., vol. 20, 2011, pp. 161–175.10.1109/TIP.2010.205881120643609]Search in Google Scholar
[[11] R. Cierniak, A. Lorent, Comparison of algebraic and analytical approaches to the formulation of the statistical model-based reconstruction problem for x-ray computed tomography, Computerized Medical Imaging and Graphics, vol. 52, 2016, pp. 19-27.10.1016/j.compmedimag.2016.04.00127289536]Search in Google Scholar
[[12] R. Cierniak, A new approach to tomographic image reconstruction using a Hopfield-type neural network, International Journal Artificial Intelligence in Medicine, vol. 43, 2008, pp. 113–125.10.1016/j.artmed.2008.03.00318502625]Search in Google Scholar
[[13] R. Cierniak, A new approach to image reconstruction from projections problem using a recurrent neural network, International Journal of Applied Mathematics and Computer Science, vol. 183, 2008, pp. 147–157.10.2478/v10006-008-0014-y]Search in Google Scholar
[[14] R. Cierniak, New neural network algorithm for image reconstruction from fan-beam projections, Neurocomputing, vol. 72, 2009, pp. 3238–3244.10.1016/j.neucom.2009.02.005]Search in Google Scholar
[[15] R. Cierniak, A three-dimensional neural network based approach to the image reconstruction from projections problem, Lecture Notes in Artificial Intelligence, 6113, 2010, pp.505–514.10.1007/978-3-642-13208-7_63]Search in Google Scholar
[[16] F. Noo, M. Defrise, R. Clackdoyle, Single-slice rebinning method for helical cone-beam CT, Phys. Med. Biol., vol. 44, 1999, pp. 561–570.10.1088/0031-9155/44/2/01910070801]Search in Google Scholar
[[17] H. Bruder, M. Kachelrieß, S. Schaller, K. Stierstorfer, T. Flohr, Single-slice rebinning reconstruction in spiral cone-beam computed tomography, IEEE Trans. Med. Imag., vol. 9, 2000, pp. 873–887.10.1109/42.88783611127602]Search in Google Scholar
[[18] M. Kachelrieß, S. Schaller, W. A. Kalender, Advanced single-slice rebinning in cone-beam spiral CT, Med. Phys., vol. 27, 2000, pp.754–773.10.1118/1.59893810798698]Search in Google Scholar
[[19] M. Kachelrieß;, T. Fuchs, S. Schaller, et al, Advanced single-slice rebinning for tilted spiral cone-beam CT, Med. Phys., vol. 28, 2001, pp.1033–1041.10.1118/1.137367511439473]Search in Google Scholar
[[20] R. Cierniak, A novel approach to image reconstruction from projections using Hopfield-type neural network, Lecture Notes in Artificial Intelligence, 4029, 2006, pp. 890–898.10.1007/11785231_93]Search in Google Scholar
[[21] J. -B. Thibault, C. A. Bouman, K. D. Sauer, J. Hsieh, A recursive filter noise reduction in statistical iterative tomographic imaging, Proc. of SPIE-IS&T Symposium on Electronic Imaging Science and Technology–Computational Imaging, vol. 6065, 2006, pp. 15–19.]Search in Google Scholar
[[22] J. -F. Aujol, Some first-order algorithms for total variation based image restoration, J. Math. Im. Vision, vol. 34, 2009, pp. 307–327.10.1007/s10851-009-0149-y]Search in Google Scholar
[[23] L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol. 60, 1992, pp. 259–268.10.1016/0167-2789(92)90242-F]Search in Google Scholar
[[24] A. C. Kak, M. Slanley, Principles of computerized tomographic imaging, IEEE Press, New York, 1988.]Search in Google Scholar