1. bookVolume 27 (2022): Issue 3 (September 2022)
Journal Details
License
Format
Journal
eISSN
2353-9003
First Published
19 Apr 2013
Publication timeframe
4 times per year
Languages
English
Open Access

Tensile Fault Dislocation in an Irregular-Layered Elastic Half-Space

Published Online: 29 Aug 2022
Volume & Issue: Volume 27 (2022) - Issue 3 (September 2022)
Page range: 171 - 198
Received: 24 Apr 2022
Journal Details
License
Format
Journal
eISSN
2353-9003
First Published
19 Apr 2013
Publication timeframe
4 times per year
Languages
English

[1] Ben-Menahem A. and Gillon A. (1970): Crustal deformation by earthquakes and explosions.– Bull. Seism. Soc. Am., vol.60, pp.193-215.10.1785/BSSA0600010193 Search in Google Scholar

[2] Bonafede M. and Rivalta E. (1999a): The tensile dislocation problem in a layered elastic medium.− Geophys. J. Int., vol.136, pp.341-356.10.1046/j.1365-246X.1999.00645.x Search in Google Scholar

[3] Bonafede M. and Rivalta E. (1999b): On tensile cracks close to and across the interface between two welded elastic half-spaces.– Geophys. J. Int., vol.138, pp.410-434.10.1046/j.1365-246X.1999.00880.x Search in Google Scholar

[4] Singh S.J. and Garg N.R. (1986): On the representation of two-dimensional seismic sources.– Acta. Geophys. Pol., vol.34, pp.1-12. Search in Google Scholar

[5] Singh S.J., Punia M. and Kumari G. (1997): Deformation of a layered half-space due to a very long dip-slip fault.– Proc. Indian Natl. Sci. Acad., vol.63a, pp.225-240. Search in Google Scholar

[6] Singh S.J. and Singh M. (2004): Deformation of a layered half-space due to a very long tensile fault.– Proc. Indian Acad. Sci. (Earth Planet. Sci.), vol.113, pp.235-246.10.1007/BF02709790 Search in Google Scholar

[7] Kumar A., Singh S.J. and Singh J. (2005): Deformation of two welded half-spaces due to a long inclined tensile fault. – J. Earth Syst. Sci., vol.114, pp.97-103.10.1007/BF02702012 Search in Google Scholar

[8] Bala N. and Rani S. (2009): Static deformation due to a long buried dip-slip fault in an isotropic half-space welded with an orthotropic half-space.– Sadhana Indian Academy of Sciences, vol.34, pp.887-902.10.1007/s12046-009-0053-6 Search in Google Scholar

[9] Malik M., Singh M. and Singh J. (2012): Static deformation due to long tensile fault embedded in an isotropic half-space in welded contact with an orthotropic half-space.– Inter. J. Sci. Res. Pub., vol.2, pp.1-12. Search in Google Scholar

[10] Malik M., Minakshi, Sahrawat R.K. and Singh M. (2014): Static deformation of two half-spaces in smooth contact due to a vertical tensile fault of finite width.– Inter. J. Comp., vol.4, pp.440-450. Search in Google Scholar

[11] Ray A. and Singh A.K. (2020): Love-type waves in couple-stress stratum imperfectly bonded to an irregular viscous substrate.– Acta Mech., vol.231, pp.101-123.10.1007/s00707-019-02525-5 Search in Google Scholar

[12] Selim M.M. (2020): Propagation of torsional surface waves in heterogeneous half-space with irregular free surface.– American Scientific Publishers, vol.9, pp.128-131.10.1166/jon.2020.1734 Search in Google Scholar

[13] Madan D.K, Kumar R. and Sikka J.S. (2014): Love wave propagation in an irregular fluid saturated porous anisotropic layer with rigid boundaries.– Journal of Applied Science and Research, vol.10, No.4, pp.281-287. Search in Google Scholar

[14] Madan D.K. and Gaba A. (2016): 2-Dimensional deformation of an irregular orthotropic elastic medium.– Journal of Mathematics (IOSR-JM), vol.12, pp.101-113.10.9790/5728-120405101113 Search in Google Scholar

[15] Savita, SahrawatR.K. and Malik M. (2021a): Stresses in a monoclinic elastic layer lying over an irregular isotropic elastic half-space.– Advances and Applications in Mathematical Sciences, vol.21, pp. 21-39. Search in Google Scholar

[16] Savita, Sahrawat R.K and Malik M. (2021b): Stresses in a monoclinic elastic plate placed upon an irregular monoclinic elastic half-space.– Indian Journal of Science and Technology, vol.14, pp.55-70.10.17485/IJST/v14i1.1874 Search in Google Scholar

[17] Sokolnikoff I.S. (1956): Mathematical Theory of Elasticity.– McGraw-Hill, New York. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo