[
[1] Typiak A., Łopatka M. J., Rykała Ł. and Kijek M. (2018): Dynamics of omnidirectional unmanned rescue vehicle with mecanum wheels.– AIP Conference Proceedings 1922, Article No.120005, p.10, https://doi.org/10.1063/1.5019120.
]Search in Google Scholar
[
[2] Hryniewicz P., Gwiazda A., Banaś W., Sękala A. and Foit K. (2017): Modelling of a mecanum wheel taking into account the geometry of road rollers.– IOP Conference Series: Materials Science and Engineering, vol.227, Article No.012060.10.1088/1757-899X/227/1/012060
]Search in Google Scholar
[
[3] Guo S., Shuai Q. and Xi F. (2017). Vision based navigation for omni-directional mobile industrial robot.– Procedia Computer Science, vol.105, pp.20-26.10.1016/j.procs.2017.01.182
]Search in Google Scholar
[
[4] Huang Y., Meng R., Yu J., Zhao Z. and Zhang X. (2022): Practical obstacle-overcoming robot with a heterogeneous sensing system: design and experiments.– Machines, vol.10, Article No.289, https://doi.org/10.3390/machines10050289.
]Search in Google Scholar
[
[5] Park J., An B., Kwon O. and Yi H. (2022): User intention based intuitive mobile platform control: application to a patient transfer robot.– Int. J. Precis. Eng. Manuf., vol23, pp.653-666.10.1007/s12541-022-00656-9
]Search in Google Scholar
[
[6] Hsu P. E., Hsu Y. L., Chang K. W., and Geiser C. (2012): Mobility assistance design of the intelligent robotic wheelchair.– International Journal of Advanced Robotic Systems, vol.9, No.6, p.10, https://doi.org/10.5772/54819.
]Search in Google Scholar
[
[7] Ilon B. E. (1975): Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base.– US Patent No.3,876,255.
]Search in Google Scholar
[
[8] Adam N., Aiman M., Nafis W.M., Irawan A., Muaz M., Hafiz M. and Sheikh Ali S.N. (2016): Omnidirectional configuration and control approach on mini heavy loaded forklift autonomous guided vehicle.– MATEC Web of Conferences, vol.90, Article No.01077, p.11, https://doi.org/10.1051/matecconf/20179001077.
]Search in Google Scholar
[
[9] Bae J.-J. and Kang N. (2016): Design optimization of a mecanum wheel to reduce vertical vibrations by the consideration of equivalent stiffness.– Shock and Vibration, vol.2016, Article No.5892784, p.8, https://doi.org/10.1155/2016/5892784.
]Search in Google Scholar
[
[10] Sun Z., Xie H., Zheng J., Man Z., and He D. (2021): Path-following control of mecanum-wheels omnidirectional mobile robots using nonsingular terminal sliding mode.– Mechanical Systems and Signal Processing, vol.147, Article No.107128, p.14, https://doi.org/10.1016/j.ymssp.2020.107128.
]Search in Google Scholar
[
[11] Cao G., Zhao X., Ye C. and Yu S. (2022): Fuzzy adaptive PID control method for multi-mecanum-wheeled mobile robot.– J. Mech. Sci. Technol., vol.36, pp.2019-2029, DOI:10.1007/s12206-022-0337-x.
]Open DOISearch in Google Scholar
[
[12] Chu B. (2017): Position compensation algorithm for omnidirectional mobile robots and its experimental evaluation.– International Journal of Precision Engineering and Manufacturing, vol.18, No.12, pp.1755-1762.10.1007/s12541-017-0204-3
]Search in Google Scholar
[
[13] Qian J., Zi B., Wang D., Ma Y. and Zhang D. (2017): The design and development of an omni-directional mobile robot oriented to an intelligent manufacturing system.– Sensors, vol.17, No.9, Article No.2073, p.15, https://doi.org/10.3390/s17092073.562074128891964
]Search in Google Scholar