1. bookVolume 68 (2022): Issue 3 (September 2022)
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Content of sterols in in vitro propagated Chamerion angustifolium (L.) Holub plants

Published Online: 07 Nov 2022
Volume & Issue: Volume 68 (2022) - Issue 3 (September 2022)
Page range: 1 - 7
Received: 30 Mar 2022
Accepted: 22 Jul 2022
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English

1. Wagner WL, Hoch PC, Raven PH. Revised classification of the Onagraceae. Syst Bot Monogr 2007; 83:1-240. Search in Google Scholar

2. Adamczak A, Dreger M, Seidler-Łożykowska K, Wielgus K. Fireweed (Epilobium angustifolium L.): botany, phytochemistry and traditional uses. A Review. Herba Pol 2019; 65(3):51–63. doi: https://dx.doi.org/10.2478/hepo-2019-001810.2478/hepo-2019-0018 Search in Google Scholar

3. European Medicines Agency (EMA) Committee on Herbal Medicinal Products. European Union herbal monograph on Epilobium angustifolium L. and/or Epilobium parviflorum Schreb., herba. https://www.ema.europa.eu/en/documents/herbal-monograph/european-union-herbal-monograph-epilobium-angustifolium-l/epilobium-parviflorum-schreb-herba_en.pdf (Accessed 14 January 2022). Search in Google Scholar

4. Esposito C, Santarcangelo C, Masselli R et al. Epilobium angustifolium L. extract with high content in oenothein B on benign prostatic hyperplasia: a monocentric, randomized, double-blind, placebo-controlled clinical trial. Biomed Pharmacother 2021; 138:111414. doi: https://dx.doi.org/10.1016/j.biopha.2021.11141410.1016/j.biopha.2021.11141433765581 Search in Google Scholar

5. Schepetkin IA, Ramstead AG, Kirpotina LN, Voyich JM, Jutila MA, Quinn MT. Therapeutic potential of polyphenols from Epilobium angustifolium (fireweed). Phytother Res 2016; 30(8):1287–1297. doi: http://dx.doi.org/10.1002/ptr.564810.1002/ptr.5648504589527215200 Search in Google Scholar

6. Dreger M, Adamczak A, Seidler-Łożykowska K, Wielgus K. Pharmacological properties of fire-weed (Epilobium angustifolium L.) and bioavail-ability of ellagitannins. A review. Herba Pol 2020; 66(1):52–64. doi: http://dx.doi.org/10.2478/hepo-2020-000110.2478/hepo-2020-0001 Search in Google Scholar

7. Ruszová E, Cheel J, Pávek S, Moravcová M, Hermannová M, Matějková I et al. Epilobium angus-tifolium extract demonstrates multiple effects on dermal fibroblasts in vitro and skin photo-protection in vivo. Gen Physiol Biophys 2013; 32(3):347-59. doi: http://dx.doi.org/10.4149/gpb_201303110.4149/gpb_201303123817638 Search in Google Scholar

8. Nowak A, Zagórska-Dziok M, Ossowicz-Rupniewska P, Makuch E, Duchnik W, Kucharski Ł et al. Epilobium angustifolium L. extracts as valuable ingredients in cosmetic and dermatological products. Molecules 2021; 26:3456. doi: https://dx.doi.org/10.3390/molecules2611345610.3390/molecules26113456820103334200200 Search in Google Scholar

9. Nowak R, Krzaczek T. Sterole w zielu Epilobium angustifolium L. (Sterols in the herb of Epilobium angustifolium L.). Herba Pol 1998; 44(4):297–9. Search in Google Scholar

10. Węglarz Z, Kosakowska O, Pelc M, Geszprych A, Przybył JL, Bączek K. Intraspecific variability of fireweed (Chamaenerion angustifolium (L.) Scop.) and evening primrose (Oenothera biennis L.) in respect of sterol content. Herba Pol 2011; 57(1):7–15. http://www.herbapolonica.pl/magazines-files/1180114-art1.pdf Search in Google Scholar

11. Miras-Moreno B, Sabater-Jara AB, Pedreño MA, Almagro L. Bioactivity of phytosterols and their production in plant in vitro cultures. J Agric Food Chem 2016; 201664(38):7049–7058. doi: https://dx.doi.org/10.1021/acs.jafc.6b0234510.1021/acs.jafc.6b0234527615454 Search in Google Scholar

12. Racette SB, Lin X, Ma L, Ostlund RE Jr. Natural dietary phytosterols. J AOAC Int 2015; 98(3): 679–684. doi: https://dx.doi.org/10.5740/jaoacint.SGERacette10.5740/jaoacint.SGERacette26086252 Search in Google Scholar

13. Han JH, Yang YX, Feng MY. Contents of phytosterols in vegetables and fruits commonly consumed in China. Biomed Environ Sci 2008; 21(6):449−453. doi: https://dx.doi.org/10.1016/S0895-3988(09)60001-510.1016/S0895-3988(09)60001-519263798 Search in Google Scholar

14. Lagarda MJ, García-Llatas G, Farré R. Analysis of phytosterols in foods. J Pharm Biomed Anal 2006; 28;41(5):1486-96. doi: https://dx.doi.org/10.1016/j.jpba.2006.02.05210.1016/j.jpba.2006.02.05216621410 Search in Google Scholar

15. Yang R, Xue L, Zhang L, Wang X, Qi X, Jiang J et al. Phytosterol contents of edible oils and their contributions to estimated phytosterol intake in the Chinese diet. Foods 2019; 8(8):334. doi: https://dx.doi.org/10.3390/foods808033410.3390/foods8080334672395931404986 Search in Google Scholar

16. Espinosa-Leal CA, Puente-Garza CA, García-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta 2018; 248:1–18. doi: https://dx.doi.org/10.1007/s00425-018-2910-110.1007/s00425-018-2910-1708817929736623 Search in Google Scholar

17. Rogowska A, Szakiel A. Enhancement of phytosterol and triterpenoid production in plant hairy root cultures—simultaneous stimulation or competition? Plants 2021; 10:2028. doi: https://dx.doi.org/10.3390/plants1010202810.3390/plants10102028854158434685836 Search in Google Scholar

18. Dreger M, Seidler-Łożykowska K, Szalata M, Wielgus K. Phytochemical variability during vegetation of Chamerion angustifolium (L.) Holub genotypes derived from in vitro cultures. Plant Cell Tiss Organ Cult 2021; 147:619–633 doi: https://dx.doi.org/10.1007/s11240-021-02154-810.1007/s11240-021-02154-8 Search in Google Scholar

19. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 1962; 15:473–497. doi: https://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x10.1111/j.1399-3054.1962.tb08052.x Search in Google Scholar

20. Dyas L, Threlfall DR, Goad LJ. The sterol composition of five plant species grown as cell suspension cultures. Phytochemistry 1994; 35(3):655−660.10.1016/S0031-9422(00)90581-8 Search in Google Scholar

21. Niżyński B, Alsoufi ASM, Pączkowski C, Długosz M, Szakiel A. The content of free and esterified triterpenoids of the native marigold (Calendula officinalis) plant and its modifications in in vitro cultures. Phytochem Lett 2015; 11:410–417. doi: https://dx.doi.org/10.1016/j.phytol.2014.12.01710.1016/j.phytol.2014.12.017 Search in Google Scholar

22. Sharma N, Nathawat RS, Gour K, Patni V. Establishment of callus tissue and effect of growth regulators on enhanced sterol production in Cissus quadrangularis L. Int J Pharmacol 2011; 7:653−658. http://dx.doi.org/10.3923/ijp.2011.653.65810.3923/ijp.2011.653.658 Search in Google Scholar

23. Alsoufi ASM, Staśkiewicz K, Markowski M. Alterations in oleanolic acid and sterol content in marigold (Calendula officinalis) hairy root cultures in response to stimulation by selected phytohormones. Acta Physiol Plant 2021; 43:44 doi: https://dx.doi.org/10.1007/s11738-021-03212-610.1007/s11738-021-03212-6 Search in Google Scholar

24. Bathoju G, Rao K, Giri A. Production of sapogenins (stigmasterol and hecogenin) from genetically transformed hairy root cultures of Chlorophytum borivilianum (Safed musli). Plant Cell Tiss Organ Cult 2017; 131:369–376. doi: https://dx.doi.org/10.1007/s11240-017-1290-810.1007/s11240-017-1290-8 Search in Google Scholar

25. Arpita Roy A, Bharadvaja N. Effect of different culture medias on shoot multiplication and stigmasterol content in accessions of Centella asiatica. Int J Ayurvedic Herb Med 2017; 7:2643–2650. http://dx.doi.org/10.18535/ijahm/v7i4.0210.18535/ijahm/v7i4.02 Search in Google Scholar

26. Gryszczyńska A, Dreger M, Piasecka A, Kachlicki P, Witaszak N, Sawikowska A et al. Qualitative and quantitative analyses of bioactive compounds from ex vitro Chamaenerion angustifolium (L.) (Epilobium augustifolium) herb in different harvest times. Ind Crops Prod 2018; 123:208–220. doi: https://dx.doi.org/10.1016/j.indcrop.2018.06.01010.1016/j.indcrop.2018.06.010 Search in Google Scholar

27. Seo JW, Jeong JH, Shin CG, Lo SC, Han SS, Yu KW et al. Overexpression of sqalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phyto-chemistry 2005; 66:869−877. doi: https://dx.doi.org/10.1016/j.phytochem.2005.02.01610.1016/j.phytochem.2005.02.01615845405 Search in Google Scholar

28. Kim YK, Kim YB, Uddin MR, Lee S, Kim SU, Park SU. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. ACS Synth. Biol 2014; 3:773−779. doi: https://dx.doi.org/10.1021/sb400194g10.1021/sb400194g24933610 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo