1. bookVolume 68 (2022): Issue 2 (June 2022)
Journal Details
First Published
04 Apr 2014
Publication timeframe
4 times per year
Open Access

Antioxidant potential of various extracts from 5 common European mosses and its correlation with phenolic compounds

Published Online: 02 Oct 2022
Volume & Issue: Volume 68 (2022) - Issue 2 (June 2022)
Page range: 54 - 68
Received: 24 Jan 2022
Accepted: 07 Jun 2022
Journal Details
First Published
04 Apr 2014
Publication timeframe
4 times per year

1. Vanderpoorten A, Goffinet B. Introduction to bryophytes. Cambridge. Cambridge University Press 2009;1-303.10.1017/CBO9780511626838 Search in Google Scholar

2. Asakawa Y, Ludwiczuk A, Nagashima F. Chemical constituents of bryophytes: bio- and chemical diversity, biological activity, and chemosystematics. In: Kinghorn DA, Falk H, Kobayashi J, eds. Progress in the chemistry of organic natural products. Vienna: Springer 2013; 1–796.10.1002/chin.201312271 Search in Google Scholar

3. Harris ESJ. Ethnobryology: traditional uses and folk classification of bryophytes. Bryologist 2008; 111:169–217. doi: https://dx.doi.org/10.1639/0007-2745(2008)111[169:ETUAFC]2.0.CO;2 Search in Google Scholar

4. Mishra R, Pandey VK, Chandra R. Potential of bryophytes as terapeutics. IJPSR 2014; 5:584–3593. doi: https://dx.doi.org/10.13040/IJPSR.0975-8232.5(9).3584-9310.13040/IJPSR.0975-8232.5(9).3584-93 Search in Google Scholar

5. Dey A, Nath De J. Antioxidative potential of Bryophytes: Stress tolerance and commercial perspectives: a review. Pharmacologia 2012; 3:151–159.10.5567/pharmacologia.2012.151.159 Search in Google Scholar

6. Mukhopadhyay S. Screening of antimicrobial and antioxidative potential of selected Eastern Himalayan mosses. European J Med Plants 2013; 3:422–428. doi: https://dx.doi.org/10.9734/ejmp/2013/316410.9734/EJMP/2013/3164 Search in Google Scholar

7. Ertürk Ö, Sahin H, Ertürk EY, Hotaman HE, Koz B, Özdemir Ö. The antimicrobial and antioxidant activities of extracts obtained from some moss species in Turkey. Herba Pol 2015; 61:52–65. doi: https://dx.doi.org/10.1515/hepo-2015-003110.1515/hepo-2015-0031 Search in Google Scholar

8. Stebel A, Smolarz HD, Jankowska-Błaszczuk M, Trylowski M, Bogucka-Kocka A. Seasonal variation in antioxidant activity of selected mosses from Poland. Fragm Naturae 2016; 49:65–73. Search in Google Scholar

9. Karim FA, Suleiman M, Rahmat A, Bakar MFA. Phytochemicals, antioxidant and antiproliferative properties of five moss species from Sabah, Malaysia. Int J Pharm Pharm Sci 2014; 6:292–297. Search in Google Scholar

10. Chobot V, Kubicová L, Nabbout S, Jahodář L, Vytlačilová J. Antioxidant and free radical scavenging activities of five moss species. Fitoterapia 2006; 77:598–600. doi: https://dx.doi.org/10.1016/j.fitote.2006.06.01010.1016/j.fitote.2006.06.01016876966 Search in Google Scholar

11. Chobot V, Kubicová L, Nabbout S, Jahodář L, Hadacek F. Evaluation of antioxidant activity of some common mosses. Zeitschrift fur Naturforsch - Sect C J Biosci 2008; 63:476–482. doi: https://dx.doi.org/10.1515/znc-2008-7-80210.1515/znc-2008-7-80218810988 Search in Google Scholar

12. Pejin B, Bogdanovic-Pristov J, Pejin I, Sabovljevic M. Potential antioxidant activity of the moss Bryum moravicum. Nat Prod Res 2013; 27:900–902. doi: https://dx.doi.org/10.1080/14786419.2012.66591510.1080/14786419.2012.66591522394152 Search in Google Scholar

13. Aslanbaba B, Yilmaz S, Tonguç Yayintaş Ö, Özyurt D, Öztürk BD. Total phenol content and antioxidant activity of mosses from Yenice Forest (Ida Mountain). J Sci Perspect 2017; 1:1–12. doi: https://dx.doi.org/10.26900/jsp.2017.010.26900/jsp.2017.0 Search in Google Scholar

14. Pollastri S, Tattini M. Flavonols: old compounds for old roles. Ann Bot 2011; 108:1225–1233. doi: https://dx.doi.org/10.1093/aob/mcr23410.1093/aob/mcr234319746021880658 Search in Google Scholar

15. Davies KM, Jibran R, Zhou Y, Albert NW, Brummell DA, Jordan BR, et al. The evolution of flavonoid biosynthesis: a  bryophyte perspective. Front Plant Sci 2020; 11:1–21. doi: https://dx.doi.org/10.3389/fpls.2020.0000710.3389/fpls.2020.00007 Search in Google Scholar

16. Basile A, Giordano S, López-Sáez JA, Cobianchi RC. Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 1999; 52:1479–1482. doi: https://dx.doi.org/10.1016/S0031-9422(99)00286-110.1016/S0031-9422(99)00286-1 Search in Google Scholar

17. Bartosz G. Druga twarz tlenu. Wolne rodniki w przyrodzie [Second face of oxygen. Free radicals in nature]. 2nd ed. Warszawa: Wydawnictwo Naukowe PWN 2016; 1-447. Search in Google Scholar

18. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health lien. Int J Biomed Sci 2008; 4:89–96. Search in Google Scholar

19. Andersson DC, Fauconnier J, Yamada T, Lacampagne A, Zhang SJ, Katz A, et al. Mitochondrial production of reactive oxygen species contributes to the β-adrenergic stimulation of mouse cardiomycytes. J Physiol 2011; 589:1791–1801. doi: https://dx.doi.org/10.1113/jphysiol.2010.20283810.1113/jphysiol.2010.202838 Search in Google Scholar

20. Finkel T. Signal transduction by reactive oxygen species. J Cell Biol 2011; 194:7–15. doi: https://dx.doi.org/10.1083/jcb.20110209510.1083/jcb.201102095 Search in Google Scholar

21. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010; 4:118–126. doi: https://dx.doi.org/10.4103/0973-7847.7090210.4103/0973-7847.70902 Search in Google Scholar

22. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: Mechanisms and analysis. Chem Rev 2011; 111:5944–5972.10.1021/cr200084z Search in Google Scholar

23. Dizdaroglu M, Jaruga P. Mechanisms of free radical-induced damage to DNA. Free Radic Res 2012; 46:382–419. doi: https://dx.doi.org/10.3109/10715762.2011.65396910.3109/10715762.2011.653969 Search in Google Scholar

24. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press 2007; 1-851.10.1016/0748-5514(85)90140-0 Search in Google Scholar

25. Sardesai VM. Role of antioxidants in health maintenance. Nutr Clin Pract 1995; 10:19–25. doi: https://dx.doi.org/10.1177/01154265950100011910.1177/0115426595010001197898413 Search in Google Scholar

26. Davidson AJ, Harborne JB, Longton RE. Identification of hydroxycinnamic and phenolic acids in Mnium hornum and Brachythecium rutabulum and their possible role in protection against herbivory. J Hattori Bot Lab 1989; 67:415–422. Search in Google Scholar

27. Vollár M, Gyovai A, Szucs P, Zupkó I, Marschall M, Csupor-Lffler B, et al. Antiproliferative and antimicrobial activities of selected bryophytes. Molecules 2018; 23:1520. doi: https://dx.doi.org/10.3390/molecules2307152010.3390/molecules23071520609995929937511 Search in Google Scholar

28. Singh M, Rawat AKS, Govindarajan R. Antimicrobial activity of some Indian mosses. Fitoterapia 2007; 78:156–158. doi: https://dx.doi.org/10.1016/j.fitote.2006.10.00810.1016/j.fitote.2006.10.008 Search in Google Scholar

29. Drobnik J, Stebel A. Brachythecium rutabulum, A  neglected medicinal moss. Hum Ecol 2018; 46:133–141. doi: https://dx.doi.org/10.1007/s10745-017-9961-y10.1007/s10745-017-9961-y Search in Google Scholar

30. Huneck S. Chemistry and Biochemistry of Bryophytes. In: Schuster RM, editor. New manual of bryology. Nichinan. The Hattori Botanical Laboratory 1983; 1–116. Search in Google Scholar

31. Hawrył A, Bogucka-Kocka A, Swieboda R, Hawryl M, Stebel A, Waksmundzka-Hajnos M. Thin-layer chromatography fingerprint and chemometric analysis of selected bryophyta species with their cytotoxic activity. J Planar Chromatogr - Mod TLC 2018; 31:28–35. doi: https://dx.doi.org/10.1556/1006.2018.31.1.410.1556/1006.2018.31.1.4 Search in Google Scholar

32. Lunić TM, Oalde MM, Mandić MR, Sabovljević AD, Sabovljević MS, Gašić UM, et al. Extracts characterization and in vitro evaluation of potential immunomodulatory activities of the moss Hypnum cupressiforme Hedw. Molecules 2020; 25:3343. doi: https://dx.doi.org/10.3390/molecules2515334310.3390/molecules25153343 Search in Google Scholar

33. Glime JM. Economic and ethnic uses of bryophytes. In: Zander RH, editor. Flora of North America North of Mexico. New York and Oxford. Oxford University Press 2007; 14–41. Search in Google Scholar

34. Drobnik J, Stebel A. Medicinal mosses in pre-Linnaean bryophyte floras of central Europe. An example from the natural history of Poland. J Ethnopharmacol 2014; 153:682–685. doi: https://dx.doi.org/10.1016/j.jep.2014.03.02510.1016/j.jep.2014.03.025 Search in Google Scholar

35. Abay G, Altun M, Karakoc O, Gul F, Demirtas I. Insecticidal activity of fatty Acid-rich Turkish bryophyte extracts against Sitophilus granarius (Coleoptera: Curculionidae). Comb Chem High Throughput Screen 2013; 16:806–816. doi: https://dx.doi.org/10.2174/1386207311316999004910.2174/13862073113169990049 Search in Google Scholar

36. Drobnik J, Stebel A. Central European medicinal bryophytes in the 16th-century work by Caspar Schwenckfeld, and their ethnopharmacological origin. J Ethnopharmacol 2015; 175:407–411. doi: https://dx.doi.org/10.1016/j.jep.2015.09.03310.1016/j.jep.2015.09.033 Search in Google Scholar

37. Bondet V, Brand-Williams W, Berset C. Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. LWT - Food Sci Technol 1997; 30:609–615. doi: https://dx.doi.org/10.1006/fstl.1997.024010.1006/fstl.1997.0240 Search in Google Scholar

38. Tirzitis G, Bartosz G. Determination of antiradical and antioxidant activity: Basic principles and new insights. Acta Biochim Pol 2010; 57:139–142. doi: https://dx.doi.org/10.18388/abp.2010_238610.18388/abp.2010_2386 Search in Google Scholar

39. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999; 26:1231–1237. doi: https://dx.doi.org/10.1016/S0891-5849(98)00315-310.1016/S0891-5849(98)00315-3 Search in Google Scholar

40. Grzebyk E, Piwowar A. The Tibetan herbal medicines Padma 28 and Padma Circosan inhibit the formation of advanced glycation end-products (AGE) and advanced oxidation protein products (AOPP) in vitro. BMC Complement Altern Med 2014; 14:1–8. doi: https://dx.doi.org/10.1186/1472-6882-14-28710.1186/1472-6882-14-287413104025096528 Search in Google Scholar

41. Piwowar A, Rorbach-Dolata A, Fecka I. The antiglycoxidative ability of selected phenolic compounds – an in vitro study. Molecules 2019; 24:2689. doi: https://dx.doi.org/10.3390/molecules2415268910.3390/molecules24152689669636931344905 Search in Google Scholar

42. Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996; 49:1304–1313. doi: https://dx.doi.org/10.1038/ki.1996.18610.1038/ki.1996.1868731095 Search in Google Scholar

43. Mihailović V, Kreft S, Benković ET, Ivanović N, Stanković MS. Chemical profile, antioxidant activity and stability in stimulated gastrointestinal tract model system of three Verbascum species. Ind Crops Prod 2016; 89:141–151. doi: https://dx.doi.org/10.1016/j.indcrop.2016.04.07510.1016/j.indcrop.2016.04.075 Search in Google Scholar

44. Zhang X, Zhao Y, Wang S. Responses of anti-oxidant defense system of epilithic mosses to drought stress in karst rock desertified areas. Acta Geochim 2017; 36:205–212. doi: https://dx.doi.org/10.1007/s11631-017-0140-z10.1007/s11631-017-0140-z Search in Google Scholar

45. Allen D, Bilz M, Leaman DJ, Miller RM, Timoshyna A, Window J. European Red List of Medicinal Plants. Luxemburg: Publications Office of the European Union 2014. doi: https://dx.doi.org/10.2779/907382 Search in Google Scholar

46. Frey W, Frahm J-P, Fischer E, Lobin W. The liverworts, mosses and ferns of Europe. Colchester: Harley Books 2006.10.1163/9789004475434 Search in Google Scholar

47. Tonguc Yayintas O, Sogut O, Konyalioglu S, Yilmaz S, Tepeli B. Antioxidant activities and chemical compositon of different extracts of mosses gathered from Turkey. AgroLife Sci J 2017; 6:205–213. Search in Google Scholar

48. Shin KO, Choi KS, Kim YH. In vitro antioxidative activity of moss extract, and effect of moss on serum lipid level of mice fed with high-fat diet. Trop J Pharm Res 2016; 15:1215–1224. doi: https://dx.doi.org/10.4314/tjpr.v15i6.1410.4314/tjpr.v15i6.14 Search in Google Scholar

49. Pejin B, Bogdanović-Pristov J. ABTS Cation scavenging activity and total phenolic content of three moss species. Hem Ind 2012; 66:723–726. doi: https://dx.doi.org/10.2298/HEMIND120131022P10.2298/HEMIND120131022P Search in Google Scholar

50. Mohandas GG, Kumaraswamy M. Antioxidant activities of terpenoids from Thuidium tamariscellum (C. Muell.)Bosch. and Sande-Lac. a moss. Pharmacogn J 2018; 10:645–649. doi: https://dx.doi.org/10.5530/pj.2018.4.10610.5530/pj.2018.4.106 Search in Google Scholar

51. Ozturk M, Gökler I, Altay V. Medicinal bryophytes distribut ed in Turkey. In: Ozturk M, Hakeem KR, editors. Plants and human health. Cham. Springer International Publishing 2018; 323 – 348.10.1007/978-3-319-93997-1_8 Search in Google Scholar

52. Foti MC. Antioxidant properties of phenols. J Pharm Pharmacol 2010; 59:1673–1685. doi: https://dx.doi.org/10.1211/jpp.59.12.001010.1211/jpp.59.12.0010 Search in Google Scholar

53. Teixeira TS, Vale RC, Almeida RR, Ferreira TPS, Guimarães LGL. Antioxidant potential and its correlation with the contents of phenolic compounds and flavonoids of methanolic extracts from different medicinal plants. Rev Virtual Quim 2017; 9:1546–1559. doi: https://dx.doi.org/10.21577/1984-6835.2017009010.21577/1984-6835.20170090 Search in Google Scholar

54. Kumarappan CT, Thilagam E, Mandal SC. Antioxidant activity of polyphenolic extracts of Ichnocarpus frutescens. Saudi J Biol Sci 2012; 19:349–355. doi: https://dx.doi.org/10.1016/j.sjbs.2012.04.00410.1016/j.sjbs.2012.04.004 Search in Google Scholar

55. Mues R. Chemical constituents and biochemistry. In: Shaw AJ, Goffinet B, eds. Bryophyte biology. Cambridge. Cambridge University Press 2000; 150–181.10.1017/CBO9781139171304.006 Search in Google Scholar

56. Oztopcu-Vatan P, Savaroglu F, Iscen CF, Kabadere S, Ozturk N, Ilhan S. Screening of antimicrobial, cytotoxic effects and phenolic compounds of the moss Aulacomnium androgynum (Hedw.) schwagr (Bryophyta). J Anim Plant Sci 2017; 27:1909–1917. Search in Google Scholar

57. Jocković N, Andrade PB, Valentão P, Sabovljević M. HPLC-DAD of phenolics in bryophytes Lunularia cruciata, Brachytheciastrum velutinum and Kindbergia praelonga. J Serbian Chem Soc 2008; 73:1161–1167. doi: https://dx.doi.org/10.2298/JSC0812161J10.2298/JSC0812161J Search in Google Scholar

58. Klavina L, Springe G. Optimisation of conditions for extraction of biologically active compounds from common bryophytes in Latvia. Proc Latv Acad Sci Sect B Nat Exact, Appl Sci 2015; 69:299–306. doi: https://dx.doi.org/10.1515/prolas-2015-004610.1515/prolas-2015-0046 Search in Google Scholar

59. Jara-Palacios MJ, Gonçalves S, Heredia FJ, Hernanz D, Romano A. Extraction of antioxidants from winemaking byproducts: Effect of the solvent on phenolic composition, antioxidant and anti-cholinesterase activities, and electrochemical behaviour. Antioxidants 2020; 9:1–15. doi: https://dx.doi.org/10.3390/antiox908067510.3390/antiox9080675 Search in Google Scholar

60. Stahl W, Sies H. Antioxidant activity of carotenoids. Mol Aspects Med 2003; 24:345–351. doi: https://dx.doi.org/10.1016/S0098-2997(03)00030-X10.1016/S0098-2997(03)00030-X Search in Google Scholar

61. Pérez-Gálvez A, Viera I, Roca M. Carotenoids and chlorophylls as antioxidants. Antioxidants 2020; 9:505. doi: https://dx.doi.org/10.3390/antiox906050510.3390/antiox9060505734621632526968 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo