[
1. Vanderpoorten A, Goffinet B. Introduction to bryophytes. Cambridge. Cambridge University Press 2009;1-303.10.1017/CBO9780511626838
]Search in Google Scholar
[
2. Asakawa Y, Ludwiczuk A, Nagashima F. Chemical constituents of bryophytes: bio- and chemical diversity, biological activity, and chemosystematics. In: Kinghorn DA, Falk H, Kobayashi J, eds. Progress in the chemistry of organic natural products. Vienna: Springer 2013; 1–796.10.1002/chin.201312271
]Search in Google Scholar
[
3. Harris ESJ. Ethnobryology: traditional uses and folk classification of bryophytes. Bryologist 2008; 111:169–217. doi: https://dx.doi.org/10.1639/0007-2745(2008)111[169:ETUAFC]2.0.CO;2
]Search in Google Scholar
[
4. Mishra R, Pandey VK, Chandra R. Potential of bryophytes as terapeutics. IJPSR 2014; 5:584–3593. doi: https://dx.doi.org/10.13040/IJPSR.0975-8232.5(9).3584-9310.13040/IJPSR.0975-8232.5(9).3584-93
]Search in Google Scholar
[
5. Dey A, Nath De J. Antioxidative potential of Bryophytes: Stress tolerance and commercial perspectives: a review. Pharmacologia 2012; 3:151–159.10.5567/pharmacologia.2012.151.159
]Search in Google Scholar
[
6. Mukhopadhyay S. Screening of antimicrobial and antioxidative potential of selected Eastern Himalayan mosses. European J Med Plants 2013; 3:422–428. doi: https://dx.doi.org/10.9734/ejmp/2013/316410.9734/EJMP/2013/3164
]Search in Google Scholar
[
7. Ertürk Ö, Sahin H, Ertürk EY, Hotaman HE, Koz B, Özdemir Ö. The antimicrobial and antioxidant activities of extracts obtained from some moss species in Turkey. Herba Pol 2015; 61:52–65. doi: https://dx.doi.org/10.1515/hepo-2015-003110.1515/hepo-2015-0031
]Search in Google Scholar
[
8. Stebel A, Smolarz HD, Jankowska-Błaszczuk M, Trylowski M, Bogucka-Kocka A. Seasonal variation in antioxidant activity of selected mosses from Poland. Fragm Naturae 2016; 49:65–73.
]Search in Google Scholar
[
9. Karim FA, Suleiman M, Rahmat A, Bakar MFA. Phytochemicals, antioxidant and antiproliferative properties of five moss species from Sabah, Malaysia. Int J Pharm Pharm Sci 2014; 6:292–297.
]Search in Google Scholar
[
10. Chobot V, Kubicová L, Nabbout S, Jahodář L, Vytlačilová J. Antioxidant and free radical scavenging activities of five moss species. Fitoterapia 2006; 77:598–600. doi: https://dx.doi.org/10.1016/j.fitote.2006.06.01010.1016/j.fitote.2006.06.01016876966
]Search in Google Scholar
[
11. Chobot V, Kubicová L, Nabbout S, Jahodář L, Hadacek F. Evaluation of antioxidant activity of some common mosses. Zeitschrift fur Naturforsch - Sect C J Biosci 2008; 63:476–482. doi: https://dx.doi.org/10.1515/znc-2008-7-80210.1515/znc-2008-7-80218810988
]Search in Google Scholar
[
12. Pejin B, Bogdanovic-Pristov J, Pejin I, Sabovljevic M. Potential antioxidant activity of the moss Bryum moravicum. Nat Prod Res 2013; 27:900–902. doi: https://dx.doi.org/10.1080/14786419.2012.66591510.1080/14786419.2012.66591522394152
]Search in Google Scholar
[
13. Aslanbaba B, Yilmaz S, Tonguç Yayintaş Ö, Özyurt D, Öztürk BD. Total phenol content and antioxidant activity of mosses from Yenice Forest (Ida Mountain). J Sci Perspect 2017; 1:1–12. doi: https://dx.doi.org/10.26900/jsp.2017.010.26900/jsp.2017.0
]Search in Google Scholar
[
14. Pollastri S, Tattini M. Flavonols: old compounds for old roles. Ann Bot 2011; 108:1225–1233. doi: https://dx.doi.org/10.1093/aob/mcr23410.1093/aob/mcr234319746021880658
]Search in Google Scholar
[
15. Davies KM, Jibran R, Zhou Y, Albert NW, Brummell DA, Jordan BR, et al. The evolution of flavonoid biosynthesis: a bryophyte perspective. Front Plant Sci 2020; 11:1–21. doi: https://dx.doi.org/10.3389/fpls.2020.0000710.3389/fpls.2020.00007
]Search in Google Scholar
[
16. Basile A, Giordano S, López-Sáez JA, Cobianchi RC. Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 1999; 52:1479–1482. doi: https://dx.doi.org/10.1016/S0031-9422(99)00286-110.1016/S0031-9422(99)00286-1
]Search in Google Scholar
[
17. Bartosz G. Druga twarz tlenu. Wolne rodniki w przyrodzie [Second face of oxygen. Free radicals in nature]. 2nd ed. Warszawa: Wydawnictwo Naukowe PWN 2016; 1-447.
]Search in Google Scholar
[
18. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health lien. Int J Biomed Sci 2008; 4:89–96.
]Search in Google Scholar
[
19. Andersson DC, Fauconnier J, Yamada T, Lacampagne A, Zhang SJ, Katz A, et al. Mitochondrial production of reactive oxygen species contributes to the β-adrenergic stimulation of mouse cardiomycytes. J Physiol 2011; 589:1791–1801. doi: https://dx.doi.org/10.1113/jphysiol.2010.20283810.1113/jphysiol.2010.202838
]Search in Google Scholar
[
20. Finkel T. Signal transduction by reactive oxygen species. J Cell Biol 2011; 194:7–15. doi: https://dx.doi.org/10.1083/jcb.20110209510.1083/jcb.201102095
]Search in Google Scholar
[
21. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010; 4:118–126. doi: https://dx.doi.org/10.4103/0973-7847.7090210.4103/0973-7847.70902
]Search in Google Scholar
[
22. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: Mechanisms and analysis. Chem Rev 2011; 111:5944–5972.10.1021/cr200084z
]Search in Google Scholar
[
23. Dizdaroglu M, Jaruga P. Mechanisms of free radical-induced damage to DNA. Free Radic Res 2012; 46:382–419. doi: https://dx.doi.org/10.3109/10715762.2011.65396910.3109/10715762.2011.653969
]Search in Google Scholar
[
24. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press 2007; 1-851.10.1016/0748-5514(85)90140-0
]Search in Google Scholar
[
25. Sardesai VM. Role of antioxidants in health maintenance. Nutr Clin Pract 1995; 10:19–25. doi: https://dx.doi.org/10.1177/01154265950100011910.1177/0115426595010001197898413
]Search in Google Scholar
[
26. Davidson AJ, Harborne JB, Longton RE. Identification of hydroxycinnamic and phenolic acids in Mnium hornum and Brachythecium rutabulum and their possible role in protection against herbivory. J Hattori Bot Lab 1989; 67:415–422.
]Search in Google Scholar
[
27. Vollár M, Gyovai A, Szucs P, Zupkó I, Marschall M, Csupor-Lffler B, et al. Antiproliferative and antimicrobial activities of selected bryophytes. Molecules 2018; 23:1520. doi: https://dx.doi.org/10.3390/molecules2307152010.3390/molecules23071520609995929937511
]Search in Google Scholar
[
28. Singh M, Rawat AKS, Govindarajan R. Antimicrobial activity of some Indian mosses. Fitoterapia 2007; 78:156–158. doi: https://dx.doi.org/10.1016/j.fitote.2006.10.00810.1016/j.fitote.2006.10.008
]Search in Google Scholar
[
29. Drobnik J, Stebel A. Brachythecium rutabulum, A neglected medicinal moss. Hum Ecol 2018; 46:133–141. doi: https://dx.doi.org/10.1007/s10745-017-9961-y10.1007/s10745-017-9961-y
]Search in Google Scholar
[
30. Huneck S. Chemistry and Biochemistry of Bryophytes. In: Schuster RM, editor. New manual of bryology. Nichinan. The Hattori Botanical Laboratory 1983; 1–116.
]Search in Google Scholar
[
31. Hawrył A, Bogucka-Kocka A, Swieboda R, Hawryl M, Stebel A, Waksmundzka-Hajnos M. Thin-layer chromatography fingerprint and chemometric analysis of selected bryophyta species with their cytotoxic activity. J Planar Chromatogr - Mod TLC 2018; 31:28–35. doi: https://dx.doi.org/10.1556/1006.2018.31.1.410.1556/1006.2018.31.1.4
]Search in Google Scholar
[
32. Lunić TM, Oalde MM, Mandić MR, Sabovljević AD, Sabovljević MS, Gašić UM, et al. Extracts characterization and in vitro evaluation of potential immunomodulatory activities of the moss Hypnum cupressiforme Hedw. Molecules 2020; 25:3343. doi: https://dx.doi.org/10.3390/molecules2515334310.3390/molecules25153343
]Search in Google Scholar
[
33. Glime JM. Economic and ethnic uses of bryophytes. In: Zander RH, editor. Flora of North America North of Mexico. New York and Oxford. Oxford University Press 2007; 14–41.
]Search in Google Scholar
[
34. Drobnik J, Stebel A. Medicinal mosses in pre-Linnaean bryophyte floras of central Europe. An example from the natural history of Poland. J Ethnopharmacol 2014; 153:682–685. doi: https://dx.doi.org/10.1016/j.jep.2014.03.02510.1016/j.jep.2014.03.025
]Search in Google Scholar
[
35. Abay G, Altun M, Karakoc O, Gul F, Demirtas I. Insecticidal activity of fatty Acid-rich Turkish bryophyte extracts against Sitophilus granarius (Coleoptera: Curculionidae). Comb Chem High Throughput Screen 2013; 16:806–816. doi: https://dx.doi.org/10.2174/1386207311316999004910.2174/13862073113169990049
]Search in Google Scholar
[
36. Drobnik J, Stebel A. Central European medicinal bryophytes in the 16th-century work by Caspar Schwenckfeld, and their ethnopharmacological origin. J Ethnopharmacol 2015; 175:407–411. doi: https://dx.doi.org/10.1016/j.jep.2015.09.03310.1016/j.jep.2015.09.033
]Search in Google Scholar
[
37. Bondet V, Brand-Williams W, Berset C. Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. LWT - Food Sci Technol 1997; 30:609–615. doi: https://dx.doi.org/10.1006/fstl.1997.024010.1006/fstl.1997.0240
]Search in Google Scholar
[
38. Tirzitis G, Bartosz G. Determination of antiradical and antioxidant activity: Basic principles and new insights. Acta Biochim Pol 2010; 57:139–142. doi: https://dx.doi.org/10.18388/abp.2010_238610.18388/abp.2010_2386
]Search in Google Scholar
[
39. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999; 26:1231–1237. doi: https://dx.doi.org/10.1016/S0891-5849(98)00315-310.1016/S0891-5849(98)00315-3
]Search in Google Scholar
[
40. Grzebyk E, Piwowar A. The Tibetan herbal medicines Padma 28 and Padma Circosan inhibit the formation of advanced glycation end-products (AGE) and advanced oxidation protein products (AOPP) in vitro. BMC Complement Altern Med 2014; 14:1–8. doi: https://dx.doi.org/10.1186/1472-6882-14-28710.1186/1472-6882-14-287413104025096528
]Search in Google Scholar
[
41. Piwowar A, Rorbach-Dolata A, Fecka I. The antiglycoxidative ability of selected phenolic compounds – an in vitro study. Molecules 2019; 24:2689. doi: https://dx.doi.org/10.3390/molecules2415268910.3390/molecules24152689669636931344905
]Search in Google Scholar
[
42. Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996; 49:1304–1313. doi: https://dx.doi.org/10.1038/ki.1996.18610.1038/ki.1996.1868731095
]Search in Google Scholar
[
43. Mihailović V, Kreft S, Benković ET, Ivanović N, Stanković MS. Chemical profile, antioxidant activity and stability in stimulated gastrointestinal tract model system of three Verbascum species. Ind Crops Prod 2016; 89:141–151. doi: https://dx.doi.org/10.1016/j.indcrop.2016.04.07510.1016/j.indcrop.2016.04.075
]Search in Google Scholar
[
44. Zhang X, Zhao Y, Wang S. Responses of anti-oxidant defense system of epilithic mosses to drought stress in karst rock desertified areas. Acta Geochim 2017; 36:205–212. doi: https://dx.doi.org/10.1007/s11631-017-0140-z10.1007/s11631-017-0140-z
]Search in Google Scholar
[
45. Allen D, Bilz M, Leaman DJ, Miller RM, Timoshyna A, Window J. European Red List of Medicinal Plants. Luxemburg: Publications Office of the European Union 2014. doi: https://dx.doi.org/10.2779/907382
]Search in Google Scholar
[
46. Frey W, Frahm J-P, Fischer E, Lobin W. The liverworts, mosses and ferns of Europe. Colchester: Harley Books 2006.10.1163/9789004475434
]Search in Google Scholar
[
47. Tonguc Yayintas O, Sogut O, Konyalioglu S, Yilmaz S, Tepeli B. Antioxidant activities and chemical compositon of different extracts of mosses gathered from Turkey. AgroLife Sci J 2017; 6:205–213.
]Search in Google Scholar
[
48. Shin KO, Choi KS, Kim YH. In vitro antioxidative activity of moss extract, and effect of moss on serum lipid level of mice fed with high-fat diet. Trop J Pharm Res 2016; 15:1215–1224. doi: https://dx.doi.org/10.4314/tjpr.v15i6.1410.4314/tjpr.v15i6.14
]Search in Google Scholar
[
49. Pejin B, Bogdanović-Pristov J. ABTS Cation scavenging activity and total phenolic content of three moss species. Hem Ind 2012; 66:723–726. doi: https://dx.doi.org/10.2298/HEMIND120131022P10.2298/HEMIND120131022P
]Search in Google Scholar
[
50. Mohandas GG, Kumaraswamy M. Antioxidant activities of terpenoids from Thuidium tamariscellum (C. Muell.)Bosch. and Sande-Lac. a moss. Pharmacogn J 2018; 10:645–649. doi: https://dx.doi.org/10.5530/pj.2018.4.10610.5530/pj.2018.4.106
]Search in Google Scholar
[
51. Ozturk M, Gökler I, Altay V. Medicinal bryophytes distribut ed in Turkey. In: Ozturk M, Hakeem KR, editors. Plants and human health. Cham. Springer International Publishing 2018; 323 – 348.10.1007/978-3-319-93997-1_8
]Search in Google Scholar
[
52. Foti MC. Antioxidant properties of phenols. J Pharm Pharmacol 2010; 59:1673–1685. doi: https://dx.doi.org/10.1211/jpp.59.12.001010.1211/jpp.59.12.0010
]Search in Google Scholar
[
53. Teixeira TS, Vale RC, Almeida RR, Ferreira TPS, Guimarães LGL. Antioxidant potential and its correlation with the contents of phenolic compounds and flavonoids of methanolic extracts from different medicinal plants. Rev Virtual Quim 2017; 9:1546–1559. doi: https://dx.doi.org/10.21577/1984-6835.2017009010.21577/1984-6835.20170090
]Search in Google Scholar
[
54. Kumarappan CT, Thilagam E, Mandal SC. Antioxidant activity of polyphenolic extracts of Ichnocarpus frutescens. Saudi J Biol Sci 2012; 19:349–355. doi: https://dx.doi.org/10.1016/j.sjbs.2012.04.00410.1016/j.sjbs.2012.04.004
]Search in Google Scholar
[
55. Mues R. Chemical constituents and biochemistry. In: Shaw AJ, Goffinet B, eds. Bryophyte biology. Cambridge. Cambridge University Press 2000; 150–181.10.1017/CBO9781139171304.006
]Search in Google Scholar
[
56. Oztopcu-Vatan P, Savaroglu F, Iscen CF, Kabadere S, Ozturk N, Ilhan S. Screening of antimicrobial, cytotoxic effects and phenolic compounds of the moss Aulacomnium androgynum (Hedw.) schwagr (Bryophyta). J Anim Plant Sci 2017; 27:1909–1917.
]Search in Google Scholar
[
57. Jocković N, Andrade PB, Valentão P, Sabovljević M. HPLC-DAD of phenolics in bryophytes Lunularia cruciata, Brachytheciastrum velutinum and Kindbergia praelonga. J Serbian Chem Soc 2008; 73:1161–1167. doi: https://dx.doi.org/10.2298/JSC0812161J10.2298/JSC0812161J
]Search in Google Scholar
[
58. Klavina L, Springe G. Optimisation of conditions for extraction of biologically active compounds from common bryophytes in Latvia. Proc Latv Acad Sci Sect B Nat Exact, Appl Sci 2015; 69:299–306. doi: https://dx.doi.org/10.1515/prolas-2015-004610.1515/prolas-2015-0046
]Search in Google Scholar
[
59. Jara-Palacios MJ, Gonçalves S, Heredia FJ, Hernanz D, Romano A. Extraction of antioxidants from winemaking byproducts: Effect of the solvent on phenolic composition, antioxidant and anti-cholinesterase activities, and electrochemical behaviour. Antioxidants 2020; 9:1–15. doi: https://dx.doi.org/10.3390/antiox908067510.3390/antiox9080675
]Search in Google Scholar
[
60. Stahl W, Sies H. Antioxidant activity of carotenoids. Mol Aspects Med 2003; 24:345–351. doi: https://dx.doi.org/10.1016/S0098-2997(03)00030-X10.1016/S0098-2997(03)00030-X
]Search in Google Scholar
[
61. Pérez-Gálvez A, Viera I, Roca M. Carotenoids and chlorophylls as antioxidants. Antioxidants 2020; 9:505. doi: https://dx.doi.org/10.3390/antiox906050510.3390/antiox9060505734621632526968
]Search in Google Scholar