[
1. Tvrzicka E, Kremmyda LS, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease-a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011; 155(2):117-130. doi: http://dx.doi.org/10.5507/bp.2011.03810.5507/bp.2011.03821804620
]Search in Google Scholar
[
2. Nelson DL, Cox MM. Lipid Biosynthesis. In: Principles of Biochemistry. New York: W.H. Freeman and Company 2005; 787-815.
]Search in Google Scholar
[
3. Burdge GC. Polyunsaturated fatty acid intakes and α-linolenic acid metabolism. Am J Clin Nutr 2011; 93(3):665-667. doi: http://dx.doi.org/10.3945/ajcn.110.00816910.3945/ajcn.110.00816921191139
]Search in Google Scholar
[
4. Scientific Advisory Committee on Nutrition (SACN). Advice on fish consumption: benefits and risks. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/338801/SACN_Advice_on_Fish_Consumption.pdf . Published: 2004. Accessed March 4, 2022.
]Search in Google Scholar
[
5. Shahidi F, Ambigaipalan P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu Rev Food Sci Technol 2018; 9:345-381. doi: http://dx.doi.org/10.1146/annurev-food-111317-09585010.1146/annurev-food-111317-09585029350557
]Search in Google Scholar
[
6. Brenna JT, Salem N Jr, Sinclair AJ, Cunnane SC. Alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Es-sent Fatty Acids 2009; 80(2-3):85-91. doi: http://dx.doi.org/10.1016/j.plefa.2009.01.00410.1016/j.plefa.2009.01.00419269799
]Search in Google Scholar
[
7. Simopoulos AP, Leaf A, Salem N Jr. Essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Ann Nutr Metab 1999; 43(2):127-130. doi: http://dx.doi.org/10.1159/00001277710.1159/00001277710436312
]Search in Google Scholar
[
8. Burdge GC, Powell J, Dadd T, Talbot D, Civil J, Calder PC. Acute consumption of fish oil improves postprandial VLDL profiles in healthy men aged 50-65 years. Br J Nutr 2009; 102(1):160-165. doi: http://dx.doi.org/10.1017/S000711450814355010.1017/S000711450814355019138437
]Search in Google Scholar
[
9. Calder PC, Yaqoob P. Omega-3 (n-3) fatty acids, cardiovascular disease and stability of athero-sclerotic plaques. Cell Mol Biol (Noisy-le-grand) 2010; 56(1):28-37.
]Search in Google Scholar
[
10. Calder PC, Yaqoob P. Omega-3 polyunsaturated fatty acids and human health outcomes. Bio- factors 2009; 35(3):266-272. doi: http://dx.doi.org/10.1002/biof.4210.1002/biof.4219391122
]Search in Google Scholar
[
11. Simopoulos AP. Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 1991; 54(3):438-463. doi: http://dx.doi.org/10.1093/ajcn/54.3.43810.1093/ajcn/54.3.4381908631
]Search in Google Scholar
[
12. Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot Essent Fatty Acids 2008; 79(3-5):101-108. doi: http://dx.doi.org/10.1016/j.plefa.2008.09.01610.1016/j.plefa.2008.09.01618951005
]Search in Google Scholar
[
13. Shaikh SR, Edidin M. Immunosuppressive effects of polyunsaturated fatty acids on antigen presentation by human leukocyte antigen class I molecules. J Lipid Res 2007; 48(1):127-138. doi: http://dx.doi.org/10.1194/jlr.M600365-JLR20
]Search in Google Scholar
[
14. Thies F, Nebe-von-Caron G, Powell JR, Yaqoob P, Newsholme EA, Calder PC. Dietary supplementation with eicosapentaenoic acid, but not with other long-chain n-3 or n-6 polyunsaturated fatty acids, decreases natural killer cell activity in healthy subjects aged >55 y. Am J Clin Nutr 2001; 73(3):539-548. doi: http://dx.doi.org/10.1093/ajcn/73.3.53910.1093/ajcn/73.3.53911237929
]Search in Google Scholar
[
15. Chang HY, Lee HN, Kim W, Surh YJ. Docosahexaenoic acid induces M2 macrophage polarization through peroxisome proliferator-activated receptor γ activation. Life Sci 2015; 120:39-47. doi: http://dx.doi.org/10.1016/j.lfs.2014.10.01410.1016/j.lfs.2014.10.01425445227
]Search in Google Scholar
[
16. Park BK, Park S, Park JB, Park MC, Min TS, Jin M. Omega-3 fatty acids suppress Th2-associated cytokine gene expressions and GATA transcription factors in mast cells. J Nutr Biochem 2013; 24(5):868-876. doi: http://dx.doi.org/10.1016/j.jnutbio.2012.05.00710.1016/j.jnutbio.2012.05.00722902330
]Search in Google Scholar
[
17. Zapata-Gonzalez F, Rueda F, Petriz J, et al. Human dendritic cell activities are modulated by the omega-3 fatty acid, docosahexaenoic acid, mainly through PPAR(gamma):RXR heterodimers: comparison with other polyunsaturated fatty acids. J Leukoc Biol 2008; 84(4):1172-1182. doi: http://dx.doi.org/10.1189/jlb.100768810.1189/jlb.100768818632990
]Search in Google Scholar
[
18. Jin M, Park S, Park BK, et al. Eicosapentaenoic acid and docosahexaenoic acid suppress Th2 cytokine expression in RBL-2H3 basophilic leukemia cells. J Med Food 2014; 17(2):198-205. doi: http://dx.doi.org/10.1089/jmf.2013.293510.1089/jmf.2013.293524460246
]Search in Google Scholar
[
19. Gorjão R, Verlengia R, Lima TM, et al. Effect of docosahexaenoic acid-rich fish oil supplementation on human leukocyte function. Clin Nutr 2006; 25(6):923-938. doi: http://dx.doi.org/10.1016/j.clnu.2006.03.00410.1016/j.clnu.2006.03.00416697494
]Search in Google Scholar
[
20. Gutiérrez S, Svahn SL, Johansson ME. Effects of omega-3 fatty acids on immune cells. Int J Mol Sci 2019; 20(20):5028. doi: http://dx.doi.org/10.3390/ijms2020502810.3390/ijms20205028683433031614433
]Search in Google Scholar
[
21. Costantini L, Molinari R, Farinon B, Merendino N. Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci 2017; 18(12):2645. doi: http://dx.doi.org/10.3390/ijms1812264510.3390/ijms18122645575124829215589
]Search in Google Scholar
[
22. Larsson K, Quinn PJ. Occurrence and characteristics of oils and fats. In: The Lipid Handbook. London, Chapman and Hall 1994; 47-223
]Search in Google Scholar
[
23. Calder PC. Eicosanoids. Essays Biochem 2020; 64(3):423-441. doi: http://dx.doi.org/10.1042/EBC2019008310.1042/EBC2019008332808658
]Search in Google Scholar
[
24. Vergroesen AJ. Essential fatty acids, biomembranes and eicosanoid metabolism. In: Vergroesen AJ, Crawford M, editors. The role of fats in human nutrition. London, Academic Press.1989; 17-29
]Search in Google Scholar
[
25. Schoonjans K, Martin G, Staels B, Auwerx J. Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol 1997; 8(3):159-166. doi: http://dx.doi.org/10.1097/00041433-199706000-0000610.1097/00041433-199706000-000069211064
]Search in Google Scholar
[
26. Calder PC, Deckelbaum RJ. Harmful, harmless or helpful? The n-6 fatty acid debate goes on. Curr Opin Clin Nutr Metab Care 2011; 14(2):113-114. doi: http://dx.doi.org/10.1097/MCO.0b013e328343d89510.1097/MCO.0b013e328343d89521311251
]Search in Google Scholar
[
27. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 2002; 56(8):365-379. doi: http://dx.doi.org/10.1016/s0753-3322(02)00253-610.1016/S0753-3322(02)00253-6
]Search in Google Scholar
[
28. Gómez Candela C, Bermejo López LM, Loria Kohen V. Importance of a balanced omega-6/omega-3 ratio for the maintenance of health: nutritional recommendations. Nutr Hosp 2011; 26(2):323-329. doi: http://dx.doi.org/10.1590/S0212-16112011000200013
]Search in Google Scholar
[
29. Li N, Jia M, Deng Q, et al. Effect of low-ratio n-6/n-3 PUFA on blood lipid level: a meta-analysis. Hormones (Athens). 2021; 20(4):697-706. doi: http://dx.doi.org/10.1007/s42000-020-00248-
]Search in Google Scholar
[
30. Li N, Yue H, Jia M, et al. Effect of low-ratio n-6/n-3 PUFA on blood glucose: a meta-analysis. Food Funct 2019; 10(8):4557-4565. doi: http://dx.doi.org/10.1039/c9fo00323a10.1039/C9FO00323A
]Search in Google Scholar
[
31. Wei Y, Meng Y, Li N, Wang Q, Chen L. The effects of low-ratio n-6/n-3 PUFA on biomarkers of inflammation: a systematic review and meta-analysis. Food Funct 2021; 12(1):30-40. doi: http://dx.doi.org/10.1039/d0fo01976c10.1039/D0FO01976C
]Search in Google Scholar
[
32. Loef M, Walach H. The omega-6/omega-3 ratio and dementia or cognitive decline: a systematic review on human studies and biological evidence. J Nutr Gerontol Geriatr 2013; 32(1):1-23. doi: http://dx.doi.org/10.1080/21551197.2012.75233510.1080/21551197.2012.75233523451843
]Search in Google Scholar
[
33. Simopoulos AP. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016; 8(3):128. Published 2016 Mar 2. doi: http://dx.doi.org/10.3390/nu8030128
]Search in Google Scholar
[
34. Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine 2008; 233(6):674-688. doi: http://dx.doi.org/10.3181/0711-MR-31110.3181/0711-MR-31118408140
]Search in Google Scholar
[
35. Chajès V, Bougnoux P. Omega-6/omega-3 polyunsaturated fatty acid ratio and cancer. World Rev Nutr Diet 2003; 92:133-151.10.1159/000073797
]Search in Google Scholar
[
36. Carroll MW, Kuenzig ME, Mack DR, et al. The impact of inflammatory bowel disease in Canada 2018: Children and adolescents with IBD. J Can Assoc Gastroenterol 2019; 2(Suppl 1):S49-S67. doi: http://dx.doi.org/10.1093/jcag/gwy05610.1093/jcag/gwy056651224431294385
]Search in Google Scholar
[
37. Barbalho SM, Goulart RA, Aranão ALC, de Oliveira PGC. Inflammatory bowel diseases and fermentable oligosaccharides, disaccharides, monosaccharides, and polyols: An Overview. J Med Food 2018; 21(7):633-640. doi: http://dx.doi.org/10.1089/jmf.2017.012010.1089/jmf.2017.012029328869
]Search in Google Scholar
[
38. Mozaffari H, Daneshzad E, Larijani B, Bellissimo N, Azadbakht L. Dietary intake of fish, n-3 polyunsaturated fatty acids, and risk of inflammatory bowel disease: a systematic review and meta-analysis of observational studies. Eur J Nutr 2020; 59(1):1-17. doi: http://dx.doi.org/10.1007/s00394-019-01901-010.1007/s00394-019-01901-030680455
]Search in Google Scholar
[
39. Ibrahim A, Aziz M, Hassan A, et al. Dietary α-linolenic acid-rich formula reduces adhesion molecules in rats with experimental colitis. Nutrition 2012; 28(7-8):799-802. doi: http://dx.doi.org/10.1016/j.nut.2011.10.00810.1016/j.nut.2011.10.00822261574
]Search in Google Scholar
[
40. Ferrucci L, Cherubini A, Bandinelli S, et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab 2006; 91(2):439-446. doi: http://dx.doi.org/10.1210/jc.2005-130310.1210/jc.2005-130316234304
]Search in Google Scholar
[
41. Lewis JD, Abreu MT. Diet as a trigger or therapy for inflammatory bowel diseases. Gastroenterology 2017; 152(2):398-414.e6. doi: http://dx.doi.org/10.1053/j.gastro.2016.10.01910.1053/j.gastro.2016.10.01927793606
]Search in Google Scholar
[
42. Paik J, Fierce Y, Treuting PM, Brabb T, Maggio-Price L. High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a-/- male mice. J Nutr 2013; 143(8):1240-1247. doi: http://dx.doi.org/10.3945/jn.113.17461510.3945/jn.113.17461523761644
]Search in Google Scholar
[
43. Gruber L, Kisling S, Lichti P, et al. High fat diet accelerates pathogenesis of murine Crohn’s disease-like ileitis independently of obesity. PLoS One 2013; 8(8):e71661. Published 2013 Aug 16. doi: http://dx.doi.org/10.1371/journal.pone.0071661
]Search in Google Scholar
[
44. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007; 104(34):13780-13785. doi: http://dx.doi.org/10.1073/pnas.070662510410.1073/pnas.0706625104195945917699621
]Search in Google Scholar
[
45. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334(6052):105-108. doi: http://dx.doi.org/10.1126/science.120834410.1126/science.1208344336838221885731
]Search in Google Scholar
[
46. David L, Maurice C, Carmody R et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505:559-563. doi: http://dx.doi.org/10.1038/nature1282010.1038/nature12820395742824336217
]Search in Google Scholar
[
47. Arent SM, Walker AJ, Pellegrino JK, et al. The combined effects of exercise, diet, and a multi-ingredient dietary supplement on body composition and adipokine changes in overweight adults. J Am Coll Nutr 2018; 37(2):111-120. doi: http://dx.doi.org/10.1080/07315724.2017.136803910.1080/07315724.2017.136803929111889
]Search in Google Scholar
[
48. Huerta AE, Navas-Carretero S, Prieto-Hontoria PL, Martínez JA, Moreno-Aliaga MJ. Effects of α-lipoic acid and eicosapentaenoic acid in over-weight and obese women during weight loss. Obesity (Silver Spring). 2015; 23(2):313-321. doi: http://dx.doi.org/10.1002/oby.2096610.1002/oby.2096625594166
]Search in Google Scholar
[
49. Harden CJ, Dible VA, Russell JM, et al. Long-chain polyunsaturated fatty acid supplementation had no effect on body weight but reduced energy intake in overweight and obese women. Nutr Res 2014; 34(1):17-24. doi: http://dx.doi.org/10.1016/j.nutres.2013.10.00410.1016/j.nutres.2013.10.00424418242
]Search in Google Scholar
[
50. Thorsdottir I, Tomasson H, Gunnarsdottir I, et al. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content. Int J Obes (Lond). 2007; 31(10):1560-1566. doi: http://dx.doi.org/10.1038/sj.ijo.080364310.1038/sj.ijo.080364317502874
]Search in Google Scholar
[
51. Hilgendorf KI, Johnson CT, Mezger A, et al. Omega-3 fatty acids activate ciliary FFAR4 to control adipogenesis. Cell 2019; 179(6):1289-1305.e21. doi: http://dx.doi.org/10.1016/j.cell.2019.11.00510.1016/j.cell.2019.11.005
]Search in Google Scholar
[
52. Flachs P, Rossmeisl M, Bryhn M, Kopecky J. Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin Sci (Lond). 2009; 116(1):1-16. doi: http://dx.doi.org/10.1042/CS2007045610.1042/CS20070456
]Search in Google Scholar
[
53. Hensler M, Bardova K, Jilkova ZM, et al. The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice. Lipids Health Dis 2011; 10:128. Published 2011 Aug 2. doi: http://dx.doi.org/10.1186/1476-511X-10-128
]Search in Google Scholar
[
54. Hein GJ, Bernasconi AM, Montanaro MA, et al. Nuclear receptors and hepatic lipidogenic enzyme response to a dyslipidemic sucrose-rich diet and its reversal by fish oil n-3 polyunsatu-rated fatty acids. Am J Physiol Endocrinol Metab 2010; 298(3):E429-E439. doi: http://dx.doi.org/10.1152/ajpendo.00513.200910.1152/ajpendo.00513.2009
]Search in Google Scholar
[
55. Martínez-Fernández L, Laiglesia LM, Huerta AE, Martínez JA, Moreno-Aliaga MJ. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat 2015; 121(Pt A):24-41. doi: http://dx.doi.org/10.1016/j.prostaglandins.2015.07.00310.1016/j.prostaglandins.2015.07.003
]Search in Google Scholar
[
56. Siriwardhana N, Kalupahana NS, Cekanova M, LeMieux M, Greer B, Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem 2013; 24(4):613-623. doi: http://dx.doi.org/10.1016/j.jnutbio.2012.12.01310.1016/j.jnutbio.2012.12.013
]Search in Google Scholar
[
57. Kalupahana NS, Claycombe KJ, Moustaid-Moussa N. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights. Adv Nutr 2011; 2(4):304-316. doi: http://dx.doi.org/10.3945/an.111.00050510.3945/an.111.000505
]Search in Google Scholar
[
58. Pahlavani M, Razafimanjato F, Ramalingam L, et al. Eicosapentaenoic acid regulates brown adi-pose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes. J Nutr Biochem 2017; 39:101-109. doi: http://dx.doi.org/10.1016/j.jnutbio.2016.08.01210.1016/j.jnutbio.2016.08.012
]Search in Google Scholar
[
59. Harris WS, Luo J, Pottala JV, et al. Red blood cell polyunsaturated fatty acids and mortality in the Women’s Health Initiative Memory Study. J Clin Lipidol 2017; 11(1):250-259.e5. doi: http://dx.doi.org/10.1016/j.jacl.2016.12.01310.1016/j.jacl.2016.12.013
]Search in Google Scholar
[
60. Pietrzyk L, Torres A, Maciejewski R, Torres K. Obesity and obese-related chronic low-grade inflammation in promotion of colorectal cancer development. Asian Pac J Cancer Prev 2015; 16(10):4161-4168. doi: http://dx.doi.org/10.7314/apjcp.2015.16.10.416110.7314/APJCP.2015.16.10.4161
]Search in Google Scholar
[
61. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet 2014; 383(9927):1490-1502. doi: http://dx.doi.org/10.1016/S0140-6736(13)61649-910.1016/S0140-6736(13)61649-9
]Search in Google Scholar
[
62. Nguyen S, Li H, Yu D, et al. Dietary fatty acids and colorectal cancer risk in men: A report from the Shanghai Men’s Health Study and a meta-analysis. Int J Cancer 2021; 148(1):77-89. doi: http://dx.doi.org/10.1002/ijc.3319610.1002/ijc.3319632638381
]Search in Google Scholar
[
63. Zhang C, Yu H, Shen Y, Ni X, Shen S, Das UN. Polyunsaturated fatty acids trigger apoptosis of colon cancer cells through a mitochondrial pathway. Arch Med Sci 2015; 11(5):1081-1094. doi: http://dx.doi.org/10.5114/aoms.2015.54865
]Search in Google Scholar
[
64. Hawcroft G, Loadman PM, Belluzzi A, Hull MA. Effect of eicosapentaenoic acid on E-type prostaglandin synthesis and EP4 receptor signaling in human colorectal cancer cells. Neoplasia 2010; 12(8):618-627. doi: http://dx.doi.org/10.1593/neo.1038810.1593/neo.10388291540620689756
]Search in Google Scholar
[
65. Calviello G, Di Nicuolo F, Gragnoli S, et al. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 2004; 25(12):2303-2310. doi: http://dx.doi.org/10.1093/carcin/bgh26510.1093/carcin/bgh26515358633
]Search in Google Scholar
[
66. Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 2001; 1(1):11-21. doi: http://dx.doi.org/10.1038/3509401710.1038/3509401711900248
]Search in Google Scholar
[
67. Zhang K, Hu Z, Qi H, et al. G-protein-coupled receptors mediate ω-3 PUFAs-inhibited colorectal cancer by activating the Hippo pathway. Oncotarget 2016; 7(36):58315-58330. doi: http://dx.doi.org/10.18632/oncotarget.1108910.18632/oncotarget.11089529543327506947
]Search in Google Scholar
[
68. Calviello G, Resci F, Serini S, et al. Docosahexaenoic acid induces proteasome-dependent degradation of beta-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2. Carcinogenesis 2007; 28(6):1202-1209. doi: http://dx.doi.org/10.1093/carcin/bgl25410.1093/carcin/bgl25417183061
]Search in Google Scholar
[
69. Hawcroft G, Volpato M, Marston G, et al. The omega-3 polyunsaturated fatty acid eicosapentaenoic acid inhibits mouse MC-26 colorectal cancer cell liver metastasis via inhibition of PGE2-dependent cell motility. Br J Pharmacol 2012; 166(5):1724-1737. doi: http://dx.doi.org/10.1111/j.1476-5381.2012.01882.x10.1111/j.1476-5381.2012.01882.x341991422300262
]Search in Google Scholar
[
70. Toit-Kohn JL, Louw L, Engelbrecht AM. Docosahexaenoic acid induces apoptosis in colorectal carcinoma cells by modulating the PI3 kinase and p38 MAPK pathways. J Nutr Biochem 2009; 20(2):106-114. doi: http://dx.doi.org/10.1016/j.jnutbio.2007.12.00510.1016/j.jnutbio.2007.12.00518479896
]Search in Google Scholar
[
71. Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010; 142(5):687-698. doi: http://dx.doi.org/10.1016/j.cell.2010.07.04110.1016/j.cell.2010.07.041295641220813258
]Search in Google Scholar
[
72. Hara T, Hirasawa A, Ichimura A, Kimura I, Tsujimoto G. Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J Pharm Sci 2011; 100(9):3594-3601. doi: http://dx.doi.org/10.1002/jps.2263910.1002/jps.2263921618241
]Search in Google Scholar
[
73. Hossain Z, Hosokawa M, Takahashi K. Growth inhibition and induction of apoptosis of colon cancer cell lines by applying marine phospholipid. Nutr Cancer 2009; 61(1):123-130. doi: http://dx.doi.org/10.1080/0163558080239572510.1080/0163558080239572519116882
]Search in Google Scholar
[
74. D’Eliseo D, Di Rocco G, Loria R, Soddu S, San-toni A, Velotti F. Epitelial-to-mesenchimal transition and invasion are upmodulated by tumor-expressed granzyme B and inhibited by docosahexaenoic acid in human colorectal cancer cells. J Exp Clin Cancer Res 2016; 35:24. Published 2016 Feb 2. doi: http://dx.doi.org/10.1186/s13046-016-0302-610.1186/s13046-016-0302-6473671026830472
]Search in Google Scholar
[
75. Cho Y, Turner ND, Davidson LA, Chapkin RS, Carroll RJ, Lupton JR. A chemoprotective fish oil/pectin diet enhances apoptosis via Bcl-2 promoter methylation in rat azoxymethane-induced carcinomas. Exp Biol Med (Maywood). 2012; 237(12):1387-1393. doi: http://dx.doi.org/10.1258/ebm.2012.01224410.1258/ebm.2012.012244399996723354397
]Search in Google Scholar
[
76. Cho Y, Turner ND, Davidson LA, Chapkin RS, Carroll RJ, Lupton JR. Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation. Exp Biol Med (Maywood). 2014; 239(3):302-310. doi: http://dx.doi.org/10.1177/153537021351492710.1177/1535370213514927399997024495951
]Search in Google Scholar
[
77. Song M, Zhang X, Meyerhardt JA, et al. Marine ω-3 polyunsaturated fatty acid intake and survival after colorectal cancer diagnosis. Gut 2017; 66(10):1790-1796. doi: http://dx.doi.org/10.1136/gutjnl-2016-31199010.1136/gutjnl-2016-311990524739627436272
]Search in Google Scholar
[
78. Song M, Chan AT, Fuchs CS, et al. Dietary intake of fish, ω-3 and ω-6 fatty acids and risk of colorectal cancer: A prospective study in U.S. men and women. Int J Cancer 2014; 135(10):2413-2423. doi: http://dx.doi.org/10.1002/ijc.2887810.1002/ijc.28878415942524706410
]Search in Google Scholar
[
79. Van Blarigan EL, Fuchs CS, Niedzwiecki D, et al. Marine ω-3 polyunsaturated fatty acid and fish intake after colon cancer diagnosis and survival: CALGB 89803 (Alliance). Cancer Epidemiol Bio-markers Prev 2018; 27(4):438-445. doi: http://dx.doi.org/10.1158/1055-9965.EPI-17-068910.1158/1055-9965.EPI-17-0689593938029358223
]Search in Google Scholar
[
80. Yu J, Liu L, Zhang Y, Wei J, Yang F. Effects of omega-3 fatty acids on patients undergoing surgery for gastrointestinal malignancy: a systematic review and meta-analysis. BMC Cancer 2017; 17(1):271. Published 2017 Apr 14. doi: http://dx.doi.org/10.1186/s12885-017-3248-y
]Search in Google Scholar
[
81. Park JM, Jeong M, Kim EH, Han YM, Kwon SH, Hahm KB. Omega-3 polyunsaturated fatty acids intake to regulate helicobacter pylori-associated gastric diseases as nonantimicrobial dietary approach. Biomed Res Int 2015; 2015:712363. doi: http://dx.doi.org/10.1155/2015/71236310.1155/2015/712363453858726339635
]Search in Google Scholar