[
1. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24:91-98. doi: https://dx.doi.org/10.1016/j.jare.2020.03.00510.1016/j.jare.2020.03.005711361032257431
]Search in Google Scholar
[
2. Sanyaolu A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P, et al. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med 2020; 2(8):1069–1076. doi: https://dx.doi.org/10.1007/s42399-020-00363-410.1007/s42399-020-00363-4731462132838147
]Search in Google Scholar
[
3. Deng F, Gao D, Ma X, Guo Y, Wang R, Jiang W, et al. Corticosteroids in diabetes patients infected with COVID-19. Ir J Med Sci 2021; 190(1):29–31. doi: https://dx.doi.org/10.1007/s11845-020-02287-310.1007/s11845-020-02287-3731511332588377
]Search in Google Scholar
[
4. Pak J, Tucci VT, Vincent AL, Sandin RL, Greene JN. Mucormycosis in immunochallenged patients. J Emerg Trauma Shock 2008; 1(2):106. doi: https://dx.doi.org/10.4103/0974-2700.4220310.4103/0974-2700.42203270060819561989
]Search in Google Scholar
[
5. Spellberg B. Gastrointestinal mucormycosis: An evolving disease. Gastroenterol and Hepatol 2012; 8:140-142.
]Search in Google Scholar
[
6. Camara-Lemarroy CR, González-Moreno EI, Rodríguez-Gutiérrez R, Rendón-Ramírez E, Ayala-Cortés AS, Fraga-Hernández ML, et al. Clinical features and outcome of mucormycosis. Inter-discip Perspect Infect Dis 2014; 2014. doi: https://dx.doi.org/10.1155/2014/56261010.1155/2014/562610415814025210515
]Search in Google Scholar
[
7. Kwon-Chung KJ. Taxonomy of fungi causing mucormycosis and entomophthoramycosis (zygomycosis) and nomenclature of the disease: Molecular mycologic perspectives. Clin Infect Dis 2012; 54. doi: https://dx.doi.org/10.1093/cid/cir86410.1093/cid/cir864327623522247451
]Search in Google Scholar
[
8. Gupta S, Goyal R, Kaore NM. Rhino-orbital-cerebral mucormycosis: battle with the deadly enemy. Indian J Otolaryngol Head Neck Surg 2020; 72(1):104–111. doi: https://dx.doi.org/10.1007/s12070-019-01774-z10.1007/s12070-019-01774-z704014132158665
]Search in Google Scholar
[
9. Gebremariam T, Liu M, Luo G, Bruno V, Phan QT, Waring AJ, et al. CotH3 mediates fungal invasion of host cells during mucormycosis. J Clin Invest 2014; 124(1):237-250. doi: https://dx.doi.org/10.1172/JCI7134910.1172/JCI71349387124524355926
]Search in Google Scholar
[
10. Jeong W, Keighley C, Wolfe R, Lee WL, Slavin MA, Kong DCM, et al. The epidemiology and clinical manifestations of mucormycosis: a systematic review and meta-analysis of case reports. Clin Microbiol Infect 2019; 25:26-34. doi: https://dx.doi.org/10.1016/j.cmi.2018.07.01110.1016/j.cmi.2018.07.01130036666
]Search in Google Scholar
[
11. Skiada A, Lass-Floerl C, Klimko N, Ibrahim A, Roilides E, Petrikko G. Challenges in the diagnosis and treatment of mucormycosis. Med Mycol 2018; 53:248-257. doi: https://dx.doi.org/10.1093/mmy/myx10110.1093/mmy/myx101625153229538730
]Search in Google Scholar
[
12. Bala K, Chander J, Handa U, Punia RS, Attri AK. A prospective study of mucormycosis in north India: Experience from a tertiary care hospital. Med Mycol 2015; 53(3):248–257. doi: https://dx.doi.org/10.1093/mmy/myu08610.1093/mmy/myu086
]Search in Google Scholar
[
13. Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, Schaufele RL, et al. Epidemiology and outcome of zygomycosis: A review of 929 reported cases. Clin Infect Dis 2005; 41:634-653. doi: https://dx.doi.org/10.1086/43257910.1086/432579
]Search in Google Scholar
[
14. John TM, Jacob CN, Kontoyiannis DP. When uncontrolled diabetes mellitus and severe Covid-19 converge: The perfect storm for mucormycosis. J Fungi (Basel) 2021; 7. doi: https://dx.doi.org/10.3390/jof704029810.3390/jof7040298
]Search in Google Scholar
[
15. Sharma S, Grover M, Bhargava S, Samdani S, et al. Post coronavirus disease mucormycosis: A deadly addition to the pandemic spectrum. J Laryngol Otol 2021; 135(5):442–447. doi: https://dx.doi.org/10.1017/S002221512100099210.1017/S0022215121000992
]Search in Google Scholar
[
16. Singh AK, Singh R, Joshi SR, Misra A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab Syndr Clin Res Rev Elsevier 2021; 15(4):102146. doi: https://dx.doi.org/10.1016/j.dsx.2021.05.01910.1016/j.dsx.2021.05.019
]Search in Google Scholar
[
17. Garg D, Muthu V, Sehgal IS, Ramachandran R, Kaur H, Bhalla A, et al. Coronavirus disease (Covid-19) associated mucormycosis (CAM): Case report and systematic review of literature. Mycopathologia 2021; 186(2):289–298. doi: https://dx.doi.org/10.1007/s11046-021-00528-210.1007/s11046-021-00528-2
]Search in Google Scholar
[
18. Skiada A, Pavleas I, Drogari-Apiranthitou M. Epi- demiology and diagnosis of mucormycosis: An update. J Fungi 2020; 6:1-20. doi: https://dx.doi.org/10.3390/jof604026510.3390/jof6040265
]Search in Google Scholar
[
19. Werthman-Ehrenreich A. Mucormycosis with orbital compartment syndrome in a patient with COVID-19. Am J Emerg Med Elsevier 2021; 42:264.e5-264.e8. doi: https://dx.doi.org/10.1016/j.ajem.2020.09.03210.1016/j.ajem.2020.09.032
]Search in Google Scholar
[
20. Alanio A, Dellière S, Fodil S, Bretagne S, Mégarbane B. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir Med 2020; 8: e48-e49. doi: https://dx.doi.org/10.1016/S2213-2600(20)30237-X10.1016/S2213-2600(20)30237-X
]Search in Google Scholar
[
21. Chong WH, Neu KP. Incidence, diagnosis and outcomes of COVID-19-associated pulmonary aspergillosis (CAPA): a systematic review. J Hosp Infect 2021; 113:115-129. doi: https://dx.doi.org/10.1016/j.jhin.2021.04.01210.1016/j.jhin.2021.04.012805792333891985
]Search in Google Scholar
[
22. Buil JB, Zanten ARH van, Bentvelsen RG, Rijpstra TA, Goorhuis B, Van der Voort S, et al. Case series of four secondary mucormycosis infections in COVID-19 patients, the Netherlands, December 2020 to May 2021. Euro Surveill NLM (Medline) 2021; 26(23). doi: https://dx.doi.org/10.2807/1560-7917.ES.2021.26.23.210051010.2807/1560-7917.ES.2021.26.23.2100510819399334114540
]Search in Google Scholar
[
23. Krishna V, Morjaria J, Jalandari R, Omar F, Kaul S. Autoptic identification of disseminated mucormycosis in a young male presenting with cerebrovascular event, multi-organ dysfunction and COVID-19 infection. IDCases 2021; 25. doi: https://dx.doi.org/10.1016/j.idcr.2021.e0117210.1016/j.idcr.2021.e01172816173434075329
]Search in Google Scholar
[
24. Mehta S, Pandey A. Rhino-orbital mucormycosis associated with COVID-19. Cureus 2020; 12(9). doi: https://dx.doi.org/10.7759/cureus.1072610.7759/cureus.10726759903933145132
]Search in Google Scholar
[
25. Zurl C, Hoenigl M, Schulz E, Hatzl S, Gorkiewicz G, Krause R, et al. Autopsy proven pulmonary mucormycosis due to Rhizopus microsporus in a critically Ill COVID-19 patient with underlying hematological malignancy. J Fungi 2021; 7(2):1–4. doi: https://dx.doi.org/10.3390/jof702008810.3390/jof7020088791222333513875
]Search in Google Scholar
[
26. Johnson AK, Ghazarian Z, Cendrowski KD, Persichino JG. Pulmonary aspergillosis and mucormycosis in a patient with COVID-19. Med Mycol Case Rep 2021; 32:64–67. doi: https://dx.doi.org/10.1016/j.mmcr.2021.03.00610.1016/j.mmcr.2021.03.006802554033842203
]Search in Google Scholar
[
27. Sungnak W, Huang N, Bécavin C, Berg M, Network H. SARS-CoV-2 entry genes are most highly expressed in nasal goblet and ciliated cells within human airways. Nat Med 2020; 26:681–687. doi: https://dx.doi.org/10.1038/s41591-020-0868-610.1038/s41591-020-0868-6863793832327758
]Search in Google Scholar
[
28. Xu H, Zhong L, Deng J, Peng J, Hongxia D, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020; 12(1):1–5. doi: https://dx.doi.org/10.1038/s41368-020-0074-x10.1038/s41368-020-0074-x703995632094336
]Search in Google Scholar
[
29. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007; 109(9):3812-3819. doi: https://dx.doi.org/10.1182/blood-2006-07-03597210.1182/blood-2006-07-03597217255361
]Search in Google Scholar
[
30. Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunol Lett 2020; 225:31-32. doi: https://dx.doi.org/10.1016/j.imlet.2020.06.01310.1016/j.imlet.2020.06.013730573232569607
]Search in Google Scholar
[
31. Kushimoto S, Akaishi S, Sato T, Nomura R, Fujita M, Kudo D, et al. Lactate, a useful marker for disease mortality and severity but an unreliable marker of tissue hypoxia/hypoperfusion in critically ill patients. Acute Med Surg 2016; 3(4):293-297. doi: https://dx.doi.org/10.1002/ams2.20710.1002/ams2.207566733529123802
]Search in Google Scholar
[
32. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2010; 47(3):193-199. doi: https://dx.doi.org/10.1007/s00592-009-0109-410.1007/s00592-009-0109-4
]Search in Google Scholar
[
33. Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J Mol Histol 2020; 51:613-628. doi: https://dx.doi.org/10.1007/s10735-020-09915-310.1007/s10735-020-09915-3
]Search in Google Scholar
[
34. Langarizadeh MA, Tavakoli MR, Abiri A, Ghasempour A, Rezaei M, Ameri A. A review on function and side effects of systemic corticosteroids used in high-grade Covid-19 to prevent cytokine storms. EXCLI J 2021; 20:339-365. doi: https://dx.doi.org/10.17179/excli2020-3196
]Search in Google Scholar
[
35. Hoang K, Abdo T, Reinersman JM, Lu R, Higuita NIA. A case of invasive pulmonary mucormycosis resulting from short courses of corticosteroids in a well-controlled diabetic patient. Med Mycol Case Rep 2020; 29:22–24. doi: https://dx.doi.org/10.1016/j.mmcr.2020.05.00810.1016/j.mmcr.2020.05.008
]Search in Google Scholar
[
36. Cornely OA, Alastruey-Izquierdo A, Arenz D, Chen SCA, Dannaoui E, Hochhegger B, et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis 2019; 19:e405-e421. doi: https://dx.doi.org/10.1016/S1473-3099(19)30312-310.1016/S1473-3099(19)30312-3
]Search in Google Scholar
[
37. Kontoyiannis DP, Lewis RE. How I treat mucormycosis. Blood Am Soc Hematol 2011; 118(5):1216–1224. doi: https://dx.doi.org/10.1182/blood-2011-03-31643010.1182/blood-2011-03-316430329243321622653
]Search in Google Scholar
[
38. Schmidt S, Tramsen L, Perkhofer S, Lass-Flörl C, Hanisch M, Röger F, et al. Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity. Immunobiol 2013; 218(7):939–944. doi: https://dx.doi.org/10.1016/j.imbio.2012.10.01310.1016/j.imbio.2012.10.01323201314
]Search in Google Scholar
[
39. Barratt DM, Meter K Van, Asmar P, Nolan T, Trahan C, Gracia Covarrubias L, et al. Hyperbaric oxygen as an adjunct in zygomycosis: Randomized controlled trial in a murine model. Antimicrob Agents Chemother 2001; 45(12):3601–3602. doi: https://dx.doi.org/10.1128/AAC.45.12.3601-3602.200110.1128/AAC.45.12.3601-3602.20019087711709348
]Search in Google Scholar
[
40. Tripathi K. Essentials of Medical Pharmacology. 2013.10.5005/jp/books/12256
]Search in Google Scholar
[
41. Mishra KK, Kaur DC, Sahu AK, Panik R, Kashyap P, Mishra SP, et al. Medicinal plants having antifungal properties, medicinal plants - use in prevention and treatment of diseases, Bassam Abdul Rasool Hassan, IntechOpen, 2020. doi: https://www.intechopen.com/chapters/70638
]Search in Google Scholar
[
42. Batiha GES, Beshbishy AM, El-Mleeh A, Abdel-Daim MM, Devkota HP. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020; 10. doi: https://dx.doi.org/10.3390/biom1003035210.3390/biom10030352717535032106571
]Search in Google Scholar
[
43. Sun ZG, Zhao TT, Lu N, Yang YA, Zhu HL. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev Med Chem 2019; 19(10): 826–832.10.2174/138955751966619011911112530659537
]Search in Google Scholar
[
44. Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. J Appl Toxicol 2020; 40: 151-168. doi: https://dx.doi.org/10.1002/jat.388010.1002/jat.388031389060
]Search in Google Scholar
[
45. Srivastava V, Yadav A, Sarkar P. Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV2. Mater Today Proc 2020. doi: https://dx.doi.org/10.1016/j.matpr.2020.10.05510.1016/j.matpr.2020.10.055755678733078096
]Search in Google Scholar
[
46. Fatima A, Gupta VK, Luqman S, Negi AS, Kumar JK, Shanker K, et al. Antifungal activity of Glycyrrhiza glabra extracts and its active constituent glabridin. Phyther Res 2009; 23(8):1190–1193. doi: https://dx.doi.org/10.1002/ptr.272610.1002/ptr.272619170157
]Search in Google Scholar
[
47. Martins N, Ferreira ICFR, Henriques M, Silva S. In vitro anti-Candida activity of Glycyrrhiza glabra L. Ind Crops Prod 2016; 83:81–85. doi: https://dx.doi.org/10.1016/j.indcrop.2015.12.02910.1016/j.indcrop.2015.12.029
]Search in Google Scholar
[
48. Pingali U, Ali MA, Gundagani S, Nutalapati C. Evaluation of the effect of an aqueous extract of Azadirachta indica (Neem) leaves and twigs on glycemic control, endothelial dysfunction and systemic inflammation in subjects with type 2 diabetes mellitus – a randomized, double-blind, placebo-controlled. Diabetes Metab Syndr Obes Targets Ther 2020; 13:4401–4412. doi: https://dx.doi.org/10.2147/DMSO.S27437810.2147/DMSO.S274378768377333244247
]Search in Google Scholar
[
49. Abdelhady MIS, Shaheen U, Bader A, Youns MA. A new sucrase enzyme inhibitor from Azadirachta indica. Pharmacogn Mag 2016; 12(46):293–296. doi: https://dx.doi.org/10.4103/0973-1296.18570510.4103/0973-1296.185705497194627563214
]Search in Google Scholar
[
50. Adegbola PI, Semire B, Fadahunsi OS, Adegoke AE. Molecular docking and ADMET studies of Allium cepa, Azadirachta indica and Xylopia aethiopica isolates as potential anti-viral drugs for Covid-19. VirusDisease 2021; 32(1):85–97. doi: https://dx.doi.org/10.1007/s13337-021-00682-710.1007/s13337-021-00682-7803601333869672
]Search in Google Scholar
[
51. Abhinav M, Neha J, Anne G, Bharti V. Role of novel drug delivery systems in bioavailability enhancement: At A glance. Int J Drug Deliv Technol 2016; 6(1):7–26.10.25258/ijddt.v6i1.8884
]Search in Google Scholar
[
52. Sepahvand A, Eliasy H, Mohammadi M, Safarzadeh A, Azarbaijani K, Shahsavari S, et al. A review of the most effective medicinal plants for dermatophytosis in traditional medicine. Biomed Res Ther 2018; 5(6):2378–2388. doi: https://dx.doi.org/10.15419/bmrat.v5i6.45010.15419/bmrat.v5i6.450
]Search in Google Scholar
[
53. Kar P, Kumar V, Vellingiri B, Jaishee N, Anandraj A, Malhotra H, et al. Anisotine and amarogentin as promising inhibitory candidates against SARSCoV-2 proteins: a computational investigation. J Biomol Struct Dyn 2020; 1. doi: https://dx.doi.org/10.1080/07391102.2020.186013310.1080/07391102.2020.1860133780800233305988
]Search in Google Scholar
[
54. Kumar A, Dubey NK, Srivastava S. Antifungal evaluation of Ocimum sanctum essential oil against fungal deterioration of raw materials of Rauvolfia serpentina during storage. Ind Crops Prod 2013; 45:30–35. doi: https://dx.doi.org/10.1016/j.indcrop.2012.12.00610.1016/j.indcrop.2012.12.006
]Search in Google Scholar
[
55. Balakumar S, Rajan S, Thirunalasundari T, Jeeva S. Antifungal activity of Ocimum sanctum Linn. (Lamiaceae) on clinically isolated dermatophytic fungi. Asian Pac J Trop Med 2011; 4(8):654–657. doi: https://dx.doi.org/10.1016/S1995-7645(11)60166-110.1016/S1995-7645(11)60166-1
]Search in Google Scholar
[
56. Patrick F, Mtui G, Mshandete AM, Kivaisi A. Optimization of laccase and manganese peroxidase production in submerged culture of Pleurotus sajor-caju. Afr J Biotechnol 2011; 10(50):10166–10177.
]Search in Google Scholar
[
57. Beatovic D, Krstic-Miloševic D, Trifunovic S, Šiljegovic J, Glamoclija J, Ristic M, et al. Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Rec Nat Prod 2015; 9(1):62–75.
]Search in Google Scholar
[
58. Hussain AI, Anwar F, Hussain Sherazi ST, Przybylski R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem 2008; 108(3):986–995. doi: https://dx.doi.org/10.1016/j.foodchem.2007.12.01010.1016/j.foodchem.2007.12.010
]Search in Google Scholar
[
59. Huang H, Qiu M, Lin J, Lei M, Ma X, Ran F, et al. Potential effect of tropical fruits Phyllanthus emblica L. for the prevention and management of type 2 diabetic complications: a systematic review of recent advances. Eur J Nutr 2021. doi: https://doi.org/10.1007/s00394-020-02471-210.1007/s00394-020-02471-2
]Search in Google Scholar
[
60. Beidokhti MN, Jäger AK. Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet. J Ethnopharmacol 2017; 201:26-41. doi: https://dx.doi.org/10.1016/j.jep.2017.02.03110.1016/j.jep.2017.02.031
]Search in Google Scholar
[
61. Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB. Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol Nutr Food Res 2013; 57:1510-1528. doi: https://dx.doi.org/10.1002/mnfr.20110074110.1002/mnfr.201100741
]Search in Google Scholar
[
62. Azeez TB, Lunghar J. Antiinflammatory effects of turmeric (Curcuma longa) and ginger (Zingiber officinale). In: Inflammation and Natural Products 2021; 127–146. doi: https://dx.doi.org/10.1016/b978-0-12-819218-4.00011-010.1016/B978-0-12-819218-4.00011-0
]Search in Google Scholar
[
63. Arif T, Bhosale JD, Kumar N, Mandal TK, Bandre RS, Lavekar GS, et al. Natural products - Antifungal agents derived from plants. J Asian Nat Prod Res 2009; 11:621-638. doi: https://dx.doi.org/10.1080/1028602090294235010.1080/10286020902942350
]Search in Google Scholar
[
64. Dhanik J, Arya N, Nand V, Jyotsna Dhanik C.A Review on Zingiber officinale. J Pharmacogn Phytochem 2017; 6(3):174–184.
]Search in Google Scholar
[
65. Endo K, Kanno E, Oshima Y. Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochem 1990; 29(3):797–799. doi: https://dx.doi.org/10.1016/0031-9422(90)80021-810.1016/0031-9422(90)80021-8
]Search in Google Scholar
[
66. Singh G, Maurya S, Catalan C, de Lampasona MP. Studies on essential oils, part 42: Chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour Fragr J 2005; 20(1):1–6. doi: https://dx.doi.org/10.1002/ffj.137310.1002/ffj.1373
]Search in Google Scholar
[
67. Bi X, Lim J, Henry CJ. Spices in the management of diabetes mellitus. Food Chem 2017; 217:281-293. doi: https://dx.doi.org/10.1016/j.food-chem.2016.08.111
]Search in Google Scholar
[
68. Allahghadri T, Rasooli I, Owlia P, Nadooshan M, Ghazanfari T, Taghizadeh M, et al. Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from Cumin produced in Iran. J Food Sci 2010; 75(2):54–61. doi: https://dx.doi.org/10.1111/j.1750-3841.2009.01467.x10.1111/j.1750-3841.2009.01467.x20492235
]Search in Google Scholar
[
69. Liu Q, Meng X, Li Y, Zhao CN, Tang GY, Bin Li H. Antibacterial and antifungal activities of spices. Int J Mol Sci 2017; 18. doi: https://dx.doi.org/10.3390/ijms1806128310.3390/ijms18061283548610528621716
]Search in Google Scholar
[
70. Mvuemba HN, Green SE, Tsopmo A, Avis TJ. Antimicrobial efficacy of cinnamon, ginger, horseradish and nutmeg extracts against spoilage pathogens. Phytoprotection 2009; 90(2):65–70. doi: https://dx.doi.org/10.7202/044024ar10.7202/044024ar
]Search in Google Scholar
[
71. Gupta C, Garg AP, Uniyal RC, Kumari A. Comparative analysis of the antimicrobial activity of cinnamon oil and cinnamon extract on some food-borne microbes. African J Microbiol Res 2008; 2(9):247–251.
]Search in Google Scholar
[
72. Jalali A, Dabaghian F, Akbrialiabad H, Foroughinia F, Zarshenas MM. A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19. Phytother Res 2021; 35:1925-1938. doi: https://dx.doi.org/10.1002/ptr.693610.1002/ptr.693633159391
]Search in Google Scholar
[
73. Abirami S, Edwin Raj B, Soundarya T, Kannan M, Sugapriya D, Al- Dayan N, et al. Exploring antifungal activities of acetone extract of selected Indian medicinal plants against human dermal fungal pathogens. Saudi J Biol Sci 2021; 28(4):2180–2187. doi: https://dx.doi.org/10.1016/j.sjbs.2021.01.04610.1016/j.sjbs.2021.01.046807191833911934
]Search in Google Scholar
[
74. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 2006; 126(12):2565–2575. doi: https://dx.doi.org/10.1038/sj.jid.570034010.1038/sj.jid.570034017108903
]Search in Google Scholar
[
75. Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: An overview. Indian J Clin Biochem 2013; 28:314-328. doi: https://dx.doi.org/10.1007/s12291-013-0375-310.1007/s12291-013-0375-3378392124426232
]Search in Google Scholar
[
76. Falowo AB, Mukumbo FE, Idamokoro EM, Lorenzo JM, Afolayan AJ, Muchenje V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res Int 2018; 106:317-334. doi: https://dx.doi.org/10.1016/j.foodres.2017.12.07910.1016/j.foodres.2017.12.07929579932
]Search in Google Scholar
[
77. Lyons G, Gondwe C, Banuelos G, Mendoza C, Haug A, Christophersen O, et al. Drumstick tree (Moringa oleifera) leaves as a source of dietary selenium, sulphur and pro-vitamin A. Acta Hortic 2017; 1158:287-292. doi: https://dx.doi.org/10.17660/ActaHortic.2017.1158.3210.17660/ActaHortic.2017.1158.32
]Search in Google Scholar
[
78. Iswari RS, Susanti R, Dafip M. Vitamin A modulation toward IL-12, IFN-γ production and macrophage activity in malaria disease. AIP Conf Proc 2016; 1744:020049. doi: https://dx.doi.org/10.1063/1.495352310.1063/1.4953523
]Search in Google Scholar
[
79. Maggini S, Beveridge S, Sorbara PJP, Senatore G. Feeding the immune system: The role of micronutrients in restoring resistance to infections. CAB Rev Perspect Agric Vet Sci Nutr Nat Re-sour 2008; 3:1-21 https://doi.org/10.1079/PAVSNNR2008309810.1079/PAVSNNR20083098
]Search in Google Scholar
[
80. Carr AC, Maggini S. Vitamin C and immune function. Nutrients 2017; 9. doi: https://dx.doi.org/10.3390/nu911121110.3390/nu9111211570768329099763
]Search in Google Scholar
[
81. Ueland PM, McCann A, Midttun Ø, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Asp Med 2017; 53:10-27. doi: https://dx.doi.org/10.1016/j.mam.2016.08.00110.1016/j.mam.2016.08.00127593095
]Search in Google Scholar
[
82. Wu D, Lewis ED, Pae M, Meydani SN. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front Immunol 2019; 10:3160. doi: https://dx.doi.org/10.3389/fimmu.2018.0316010.3389/fimmu.2018.03160634097930697214
]Search in Google Scholar
[
83. Padayachee B, Baijnath H. An updated comprehensive review of the medicinal, phytochemical and pharmacological properties of Moringa oleifera. South African J Bot 2020; 129:304–316. doi: https://dx.doi.org/10.1016/j.sajb.2019.08.02110.1016/j.sajb.2019.08.021
]Search in Google Scholar
[
84. Singh BN, Singh BR, Singh RL, Prakash D, Dhakarey R, Upadhyay G, et al. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem Toxicol 2009; 47(6):1109–1116. doi: https://dx.doi.org/10.1016/j.fct.2009.01.03410.1016/j.fct.2009.01.03419425184
]Search in Google Scholar
[
85. Ganie SA, Zaffer M, Gulia SS, Yadav SS, Singh R, Ganguly S. Antifungal efficacy of Moringa oleifera Lam. Am J Phytomedicine Clin. Ther 2015; 3:028–033.
]Search in Google Scholar
[
86. Chuang PH, Lee CW, Chou JY, Murugan M, Shieh BJ, Chen HM. Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresour Technol 2007; 98(1):232–236. doi: https://dx.doi.org/10.1016/j.biortech.2005.11.00310.1016/j.biortech.2005.11.00316406607
]Search in Google Scholar
[
87. Ahmadu T, Ahmad K, Ismail SI, Rashed O, Asib N, Omar D. Antifungal efficacy of moringa oleifera leaf and seed extracts against botrytis cinerea causing gray mold disease of tomato (Solanum lycopersicum L.). Braz J Biol 2021; 81(4):1007–1022. doi: https://dx.doi.org/10.1590/1519-6984.23317310.1590/1519-6984.23317333175006
]Search in Google Scholar
[
88. Dahot MU. Antimicrobial activity of small protein of Moringa oleifera leaves. J Islam Acad Sci 1998; 11(1):27–32.
]Search in Google Scholar
[
89. Khanam S. Role of zinc supplementation on diabetes. Endocr Disord 2018; 2(1):10–11.
]Search in Google Scholar
[
90. Liang RY, Wu W, Huang J, Jiang SP, Lin Y. Magnesium affects the cytokine secretion of CD4+ T lymphocytes in acute asthma. J Asthma 2012; 49(10):1012–1015. doi: https://dx.doi.org/10.3109/02770903.2012.73924010.3109/02770903.2012.73924023134345
]Search in Google Scholar
[
91. Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X, et al. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA Viruses. Immunity 2018; 48(4):675-687.e7. doi: https://dx.doi.org/10.1016/j.immuni.2018.03.01710.1016/j.immuni.2018.03.01729653696
]Search in Google Scholar
[
92. Hao DC, Gu XJ, Xiao PG. Medicinal Plants: Chemistry, Biology and Omics. 2015. doi: https://dx.doi.org/10.1016/C2014-0-01090-810.1016/C2014-0-01090-8
]Search in Google Scholar
[
93. Lachman J, Hejtmánková A, Miholová D, Kolihová D, Tluka P. Relations among alkaloids, cadmium and zinc contents in opium poppy (Papaver somniferum L.). Plant, Soil Environ 2006; 52(6):282–288. doi: https://dx.doi.org/10.17221/3442-pse10.17221/3442-PSE
]Search in Google Scholar
[
94. Srivastava JK, Shankar E, Gupta S. Chamomile: A herbal medicine of the past with bright future. Mol Med Rep 2010; 3(6):895-901. doi: https://dx.doi.org/10.3892/mmr.2010.37710.3892/mmr.2010.377299528321132119
]Search in Google Scholar
[
95. More NV, Kharat AS. Antifungal and anticancer potential of Argemone mexicana L. Medicines (Basel) 2016; 3(4):28. doi: https://dx.doi.org/10.3390/medicines304002810.3390/medicines3040028545623628930138
]Search in Google Scholar
[
96. Ismaili A, Sohrabi SM, Azadpour M, Heydari R, Rashidipour M. Evaluation of the antimicrobial activity of alkaloid extracts of four Papaver species. Herb Med J 2018; 2(4):146–152. doi: https://dx.doi.org/10.22087/hmj.v0i0.638
]Search in Google Scholar