1. bookVolume 68 (2022): Issue 1 (March 2022)
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Anti-methicillin resistant and growth inhibitory studies of extract and fractions of leaves of Bryophyllum pinnatum (Lam.) Kurz (Crassulaceae)

Published Online: 09 May 2022
Volume & Issue: Volume 68 (2022) - Issue 1 (March 2022)
Page range: 19 - 28
Received: 30 Sep 2021
Accepted: 14 Dec 2021
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
Summary

Introduction: Bryophyllum pinnatum is a plant with diverse ethnomedicinal claims yet to be verified scientifically.

Objective: This work was aimed at evaluating the extract and vacuum liquid chromatographic (VLC) fractions of B. pinnatum on methicillin-resistant Staphylococcus aureus (MRSA) and anti-proliferating seed radicle cells of Sorghum bicolor.

Methods: The extract and VLC fractions of B. pinatum were screened phytochemically and subsequently tested against MRSA at concentrations of 3.125–100 mg/ml, while the antiproliferative assay at 1–30 and 1–10 mg/ml.

Results: The extract recorded zone of inhibition of 7.05 mm was only at 100 mg/ml against L20 MRSA strains. While VLC bulked fractions A(1), C (5–7), D (8–9) and E (10) had no zones of inhibition against the strains, fraction B had zones of inhibitions at all concentrations with the highest ones of 9.7 and 8.5 mm at 125 and 62.5 mg/ml, respectively, against MRSA sample (L20). The MIC of the active fraction B was observed at 3.9, 7.8 and 15.6 mg/ml for all samples used. At 96 h of seed incubation, 56 mm radicle length was recorded by the control seeds was reduced to 1.5 mm (97%) and 0.4 mm (99%) when treated with 20 and 30 mg/ml of the extract. The VLC sub-fraction B at 10 mg/ml showed more inhibitory effects on the germinating radicles as it recorded 100% reduction when compared to the control at 96 h against 80 and 70% recorded by fractions ‘A’ and ‘C’, respectively.

Conclusion: The results obtained showed an evidence of susceptibility of methicillin-resistant Staphylococcus aureus and growth inhibitory potentials of B. pinnatum, particularly the active VLC fraction “B”. Thus, further studies are required to support these findings.

Keywords

1. Ansari S, Jha RK, Mishra SK, Tiwari BR, Asaad AM. Recent advances in Staphylococcus aureus infection: focus on vaccine development. Infect Drug Resist 2019; 12:1243–1255. doi: https://dx.doi.org/10.2147/IDR.S17501410.2147/IDR.S175014652632731190912 Search in Google Scholar

2. Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog 2002; 85(1):57–72. doi: https://dx.doi.org/10.3184/00368500278323887010.3184/003685002783238870206573511969119 Search in Google Scholar

3. Chambers HF. The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis 2001; 7:178–182. doi: https://dx.doi.org/10.3201/eid0702.01020410.3201/eid0702.010204263171111294701 Search in Google Scholar

4. Garoy EY, Gebreab YB, Achila OO, Tekeste DG, Kesete R, Ghirmay R et al. Methicillin-resistant Staphylococcus aureus (MRSA): Prevalence and antimicrobial sensitivity pattern among patients – a multicenter study in Asmara, Eritrea. Can J Infect Dis Med Microbiol 2019; 832:1-9. doi: https://dx.doi.org/10.1155/2019/832183410.1155/2019/8321834638158430881532 Search in Google Scholar

5. Wielders CL, Fluit AC, Brisse S, Verhoef J, Schmitz FJ. mecA gene is widely disseminated in Staphylococcus aureus population. J Clin Microbiol 2002; 40(11):3970–3975. doi: https://dx.doi.org/10.1128/JCM.40.11.3970-3975.200210.1128/JCM.40.11.3970-3975.200213964412409360 Search in Google Scholar

6. Riffel A, Medina LF, Stefani V, Santos RC, Bizani D, Brandelli A. In vitro antimicrobial activity of a new series of 1,4-naphthoquinones. Braz J Med Biol Res 2002; 35(7):811-818. doi: https://dx.doi.org/10.1590/S0100-879X200200070000810.1590/S0100-879X200200070000812131921 Search in Google Scholar

7. Johnson SB, Park HS, Gross CP, Yu JB. Use of alternative medicine for cancer and its impact on survival. J Natl Cancer Inst 2018; 110(1):121-124. doi: https://dx.doi.org/10.1093/jnci/djx14510.1093/jnci/djx14528922780 Search in Google Scholar

8. Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK. Medicinal plants and cancer chemoprevention. Curr Drug Metab 2008; 9:581–591. doi: https://dx.doi.org/10.2174/13892000878582165710.2174/138920008785821657416080818781909 Search in Google Scholar

9. McLaughlin JL, Chang CJ, Smith DL. “Bench-top” bioassays for the discovery of bioactive natural products: an update. In: Rahman A, ed., Studies in Natural Product Chemistry 9, Elsevier, Amsterdam 1991; 383-409. doi: https://dx.doi.org/10.2174/13892000878582165710.2174/138920008785821657 Search in Google Scholar

10. Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 2013; 10(5):210–229. doi: https://dx.doi.org/10.4314/ajtcam.v10i5.210.4314/ajtcam.v10i5.2384740924311829 Search in Google Scholar

11. Afzal M, Kazmi I, Anwar F. Antineoplastic potential of Bryophyllum pinnatum Lam. on chemically induced hepatocarcinogenesis in rats. Pharmacogn Res 2013; 5(4):247–253. doi: https://dx.doi.org/10.4103/0974-8490.11881110.4103/0974-8490.118811380798824174817 Search in Google Scholar

12. Orisakeye OT, Oladoye SO, Peters OA. Chemical composition and antioxidant activity of Bryophyllum pinnatum. Root Nat Prod Res 2015; 3(3):1-3. doi: https://dx.doi.org/10.4172/2329-6836.100017310.4172/2329-6836.1000173 Search in Google Scholar

13. Ojewole JAO. Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. J Ethnopharmacol 2005; 99:13-19. doi: https://dx.doi.org/10.1016/j.jep.2005.01.02510.1016/j.jep.2005.01.02515848014 Search in Google Scholar

14. Khandelwal KR. Practical Pharmacognosy, Techniques and Experiments, 20th Edn., Nirali Prakashan, India. 2010; 320. Search in Google Scholar

15. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 2016; 6(2):71–79. doi: https://dx.doi.org/10.1016/j.jpha.2015.11.00510.1016/j.jpha.2015.11.005576244829403965 Search in Google Scholar

16. Cheesbrough M. District Laboratory Practice in Tropical Countries. 2nd Edn., Cambridge University Press, Cambridge, UK 2006; 62.10.1017/CBO9780511543470 Search in Google Scholar

17. Nwaogaraku CN, Smith SI, Badaki JA. The Molecular Detection of mecA Genes of Staphylococcus aureus. Ann Adv Biomed Sci 2019; 2(2):1-7. doi: https://dx.doi.org/10.4314/ajcem.v20i2.1010.4314/ajcem.v20i2.10 Search in Google Scholar

18. Okwu MU, Olley M, Akpoka AO, Izevbuwa OE. Comparative anti-MRSA activities of seven selected Nigerian medicinal plants and phytochemical constituents of Piper guineense (Schum and Thonn.), Curculigo pilosa (Schum and Thonn.) and Chromolaena odorata (King and Robinson). IOSR J Pharm Biol Sci 2014; 9 5(6):07-13. doi: https://dx.doi.org/10.3934/microbiol.2019.2.11710.3934/microbiol.2019.2.117664290731384707 Search in Google Scholar

19. Hamma II, Tafinta IY, Abdulmalik A, Theophilus J, Abubakar M. Phytochemical screening and antibacterial activity of the crude extract of scent leaf (Ocimum gratissimum) on Escherichia coli and Staphylococcus aureus. Asian Plt Rese J 2020; 5(2), 1-7. doi: https://dx.doi.org/10.9734/aprj/2020/v5i23010110.9734/aprj/2020/v5i230101 Search in Google Scholar

20. Ikpefan EO, Ayinde BA. Preliminary phytochemical and cytotoxic activity of the aqueous and chloroform fractions of the leaf of Persea americana mill (Lauraceae). Nig J Pharm App Sci Res 2016; 5 (1):15-20. Search in Google Scholar

21. Akinnibosun FI, Edionwe O. Evaluation of the phytochemical antimicrobial potential of the leaf extracts of Bryophyllum pinnatum L. and Citrus aurantifolia Sw. and their synergy. J Appl Sci Environ Manage 2015; 19(4):611-619. doi: https://dx.doi.org/10.4314/jasem.v19i4.710.4314/jasem.v19i4.7 Search in Google Scholar

22. Lewis K, Ausubel FM. Prospects for plant–derived antimicrobials. Nat Biotechnol 2006; 24:1504–1507. doi: https://dx.doi.org/10.1038/nbt1206-150410.1038/nbt1206-150417160050 Search in Google Scholar

23. Sibi GP, Chatly SA, Ravikumar KR. Phytoconstituents and their influence on antimicrobial properties of Morinda citrifolia L. Res J Med Plant 2012; 6:441-448.10.3923/rjmp.2012.441.448 Search in Google Scholar

24. Helegbe GK, Anyidoho LY, Gyang FN. Screening of the efficacy of some commonly used antibiotics in Ghana. Res J Microbiol 2009; 4 (6):214-221. doi: https://dx.doi.org/10.3923/jm.2009.214.22110.3923/jm.2009.214.221 Search in Google Scholar

25. Okwu DE, Nnamdi FU. Two novel flavonoids from Bryophyllum pinnatum and their antimicrobial activity. J Chem Pharm Res 2011; 3:1–10. Search in Google Scholar

26. Akinsulire OR, Aibin IE, Adenipekun T, Adelowotan T, Odugbemi T. In vitro antimicrobial activity of crude extracts from plants, Bryophyllum pinnatum and Kalanchoe crenata. Afr J Trad Compl Alt Med 2007; 4:338-344. PMCID: PMC2816479.10.4314/ajtcam.v4i3.31227 Search in Google Scholar

27. Obiukwu C, Nwanekwu K. Evaluation of the antimicrobial potentials of thirty-five medicinal plants from Nigeria. Int Sci Res J 2010; 2:48 – 51. Search in Google Scholar

28. Sofowora A. Medicinal plants and traditional medicine in Africa. 3rd Edition. Spectrum Books Limited Ibadan, Nigeria 2008; 199-204. doi: http://dx.doi.org/10.4314/ajtcam.v10i5.210.4314/ajtcam.v10i5.2384740924311829 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo