[
1. World Health Organisation. Classification of Diabetes Mellitus 2019. https://www.who.int/health-topics/diabetes
]Search in Google Scholar
[
2. International Diabetes Federation 2017. IDF Diabetes Atlas 8th edition In.
]Search in Google Scholar
[
3. Brownlee M. Biochemicstry and molecular cell biology of diabetic complications. Nature 2001; 414:813–820. doi: http://dx.doi.org/10.1038/414813a10.1038/414813a
]Search in Google Scholar
[
4. Majekova M, Ballekova J, Prnova M, Stefek M. Structure optimization of tetrahydropyridoindole-based aldose reductase inhibitors improved their efficacy and selectivity. Bioorg Med Chem 2017; 25:6353–6360. doi: http://dx.doi.org/10.1016/j.bmc.2017.10.00510.1016/j.bmc.2017.10.005
]Search in Google Scholar
[
5. Halder N, Joshi S, Gupta SK. Lens aldose reductase inhibiting potential of some indigenous plants. J Ethnopharmacol 2003; 86:113–116. doi: http://dx.doi.org/10.1016/S0378-8741(03)00052-710.1016/S0378-8741(03)00052-7
]Search in Google Scholar
[
6. Hayman S, Kinoshita JH. Isolation and properties of lens aldose reductase. J Biol Chem 1965; 240:877–882.10.1016/S0021-9258(17)45256-2
]Search in Google Scholar
[
7. Veeresham Q, Dodda D. Pharmacological reports therapeutic potential of resveratrol in diabetic complications: In vitro and in vivo studies. Pharmacol Rep 2014; 1–5. doi: http://dx.doi.org/10.1016/j.pharep.2014.04.00610.1016/j.pharep.2014.04.00625149983
]Search in Google Scholar
[
8. K Kaur A, Gupta V, Francis A, Ahmad M, Bansal P. Nutraceuticals in prevention of cataract – an evidence based approach. Saudi J Ophthalmol 2017; 31:30–37. doi: http://dx.doi.org/10.1016/j.sjopt.2016.12.00110.1016/j.sjopt.2016.12.001535294628337060
]Search in Google Scholar
[
9. Puppala M, Ponder J, Suryanarayana P, Reddy GB, Petrash M, LaBarbera DV. The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from Emblica officinalis. PLoS ONE 2012; 7:1–9. doi: http://dx.doi.org/10.1371/journal.pone.003139910.1371/journal.pone.0031399331765522485126
]Search in Google Scholar
[
10. Lim S, Jung S, Ji J, Shin K, Keum S. Synthesis of flavonoids and their effects on aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. J Pharma Pharmacol 2001; 53:653–668.10.1211/002235701177598311370705
]Search in Google Scholar
[
11. Bhadada SV, Vyas VK, Goyal RK. Protective effect of Tephrosia purpurea in diabetic cataract through aldose reductase inhibitory activity. Biomed Pharmacother 2016; 83:221–228. doi: http://dx.doi.org/10.1016/j.biopha.2016.05.01810.1016/j.biopha.2016.05.01827372406
]Search in Google Scholar
[
12. Kesari AN, Gupta RK, Singh SK, Diwakar S, Watal G. Hypoglycemic and antihyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. J Ethnopharmacol 2006; 107:374–379. doi: http://dx.doi.org/10.1016/j.jep.2006.03.04210.1016/j.jep.2006.03.04216781099
]Search in Google Scholar
[
13. Nandkarni AK. Indian Materia Medica. Vol. I. Third ed Popular Prakshan, Bombay. 1976; 45-49.
]Search in Google Scholar
[
14. Kirtikar KR, Basu BD. Indian Medicinal Plant. Lalit Mohan Publication, Calcutta. 1935; 499.
]Search in Google Scholar
[
15. Suryanarayana P, Kumar AP, Saraswat M, Petrash JM, Reddy GB. Inhibition of aldose reductase by tannoid principles of Emblica officinalis: Implications for the prevention of sugar cataract. Mol Vis 2004; 10:148–154.
]Search in Google Scholar
[
16. Gacche RN, Dhole NA. Profile of aldose reductase inhibition, anti-cataract and free radical scavenging activity of selected medicinal plants: An attempt to standardize the botanicals for amelioration of diabetes complications. Food Chem Toxicol 2011; 49:1806–1813. doi: http://dx.doi.org/10.1016/j.fct.2011.04.03210.1016/j.fct.2011.04.032
]Search in Google Scholar
[
17. Sankeshi V, Kumar PA, Naik RR, Sridhar G, Kumar MP, Gopal VVH et al. Inhibition of aldose reductase by Aegle marmelos and its protective role in diabetic cataract. J Ethnopharmacol 2013; 149:215–221.10.1016/j.jep.2013.06.025
]Search in Google Scholar
[
18. Kumar R, Pate DK, Satyendra KP, Prasad SK. Hemalatha, S. Antidiabetic activity of alcoholic leaves extract of Alangium lamarckii Thwaites on streptozotocin-nicotinamide induced type 2 diabetic rats. Asian Pac J Trop Med 2011; 4:904–909.10.1016/S1995-7645(11)60216-2
]Search in Google Scholar
[
19. Mosaddik MA, Kabir KE, Hassan P. Antibacterial activity of Alangium salviifolium flowers. Fitoterapia 2000; 71.10.1016/S0367-326X(00)00146-5
]Search in Google Scholar
[
20. Wuthi-udomlert M, Prathanturarug SWY. Anti-fungal activity and local toxicity study of Alan-gium salviifolium subsp. Hexapetalum. SE Asian J Trop Med 2002; 23:152–154.
]Search in Google Scholar
[
21. Porchezhian E, Ansari SH, Sarfaraz A. Analgesic and antiinflammatory effects of Alangium salvifolium. Pharma Biol 2001; 39:65–66.10.1076/phbi.39.1.65.5947
]Search in Google Scholar
[
22. Kumar R, Patel DK, Laloo D, Sairam K, Hemalatha S. Inhibitory effect of two Indian medicinal plants on aldose reductase of rat lens in vitro. Asian Pac J Trop Med 2011; 4: 694–697. doi: http://dx.doi.org/10.1016/S1995-7645(11)60176-410.1016/S1995-7645(11)60176-4
]Search in Google Scholar
[
23. Kumar R, Hemalatha S. Pharmacognostical standardization of leaves of Alangium lamarckii thwaites. Pharmacogn J 2011; 2:19–25.10.1016/S0975-3575(11)80021-0
]Search in Google Scholar
[
24. Subramanian R, Asmawi M, Sadikun A. In-vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim Pol 2008; 55:391–398.10.18388/abp.2008_3087
]Search in Google Scholar
[
25. Yoopan N, Thisoda P, Rangkadilok N, Sahasitiwat S. Cardiovascular effects of 13-deoxy-11,12-dide-hydro andrographolide and Andrographis paniculata extracts. Planta Med 2007; 73:503–511.10.1055/s-2007-96718117650544
]Search in Google Scholar
[
26. Das S, Neogy S, Gautam N, Roy S. In vitro nicotine induced superoxide mediated DNA fragmentation in lymphocytes: Protective role of Andrographis paniculata. Toxicol in Vitro 2009; 23:90–98.10.1016/j.tiv.2008.10.01219027060
]Search in Google Scholar
[
27. Manikam S, Stansias J. Andrographolide inhibits growth of acute promyelocytic leukemia cells by inducing retinoic acid receptor-independent cell differentiation and apoptosis. J Pharma Pharmacol 2009; 61:69–71.10.1211/jpp.61.01.0010
]Search in Google Scholar
[
28. Sheeja K, Kuttan G. Activation of cytotoxic T lymphocyte responces and attenuation of tumor growth in vivo by Andrographis paniculata extract by andrographolide. Immunopharmacol Immunotoxicol 2006; 29:81–93.10.1080/0892397070128272617464769
]Search in Google Scholar
[
29. Misra P, Pal N, Guru P, Katiyar J, Srivastava V, Tandon J. Anti-malarial activity of Andrographis paniculata (Kalmegh) against Plasmodium berghei. International J Pharmacogn 1992; 30:263–274.10.3109/13880209209054010
]Search in Google Scholar
[
30. Chao W, Kuo Y, Lin B. Anti-inflammatory activity of new compounds from Andrographis paniculata by NF-κB transactivation inhibition. J Agric Food Chem 2010; 58:2505–2512.10.1021/jf903629j20085279
]Search in Google Scholar
[
31. V Veeresham C, Swetha E, Rao AR, Asres K. In vitro and in vivo aldose reductase inhibitory activity of standardized extracts and the major constituent of Andrographis paniculata. Phytother Res 2012; 27:412–416.10.1002/ptr.472222628202
]Search in Google Scholar
[
32. Shikov AN, Pozharitskaya ON, Makarov VG. Aralia elata var. Mandshurica (Rupr. & Maxim.) J. Wen: An overview of pharmacological studies. Phytomed 2016; 23:1409–1421.10.1016/j.phymed.2016.07.01127765361
]Search in Google Scholar
[
33. Chung YS, Choi YH, Lee SJ, Choi SA, Lee J, Kim H et al. Water extract of Aralia elata prevents cataractogenesis in vitro and in vivo. J Ethnopharmacol 2005; 101:49–54.10.1016/j.jep.2005.03.02015905053
]Search in Google Scholar
[
34. Gupta SC, Prasad S, Tyagi AK, Kunnumakkara AB, Aggarwa BB. Neem (Azadirachta indica): An Indian traditional panacea with modern molecular basis. Phytomed 2017; 34:14–20.10.1016/j.phymed.2017.07.00128899496
]Search in Google Scholar
[
35. Park TW, Chul Lee JWL, Jang H, Jin Q, Lee MK, Hwang BY. Chemical constituents from Buddleja officinalis and their inhibitory effects on nitric oxide production. Nat Prod Sci 2016; 22:129–133.10.20307/nps.2016.22.2.129
]Search in Google Scholar
[
36. Matsuda H, Cai H, Kubo M, Tosa H, Iinuma M. Study on anti-cataract drugs from natural sources. II. effects of Buddlejae flos on in vitro aldose reductase activity. Biol Pharma Bull 1995; 18:463–466.10.1248/bpb.18.4637550105
]Search in Google Scholar
[
37. Kumar R, Patel DK, Satyendra K, Prasad DL, Krishnamurthy S, Hemalatha S. Type 2 antidiabetic activity of bergenin from the roots of Caesalpinia digyna rottler. Fitoterapia 2012; 83:395–401.10.1016/j.fitote.2011.12.008
]Search in Google Scholar
[
38. Rastogi S, Rawat A. A comprehensive review on bergenin, a potential hepatoprotective and anti-oxidative phytoconstituent. Herba Pol 2008; 54:66–78.
]Search in Google Scholar
[
39. Singh U, Kunwar A, Srinivasan R, Nanjan M, Priyadarsini K. Differential free radical scavenging activity and radioprotection of Caesalpinia digyna extracts and its active constituent. J Rad Res 2009; 50:425–433.10.1269/jrr.08123
]Search in Google Scholar
[
40. Pawar AV, Patil SJ, Killedar SG. Uses of Cassia fistula Linn as a medicinal plant. Inter J Adv Res Develop. 2017; 2:85–91.
]Search in Google Scholar
[
41. Gacche RN, Dhole NA. Aldose reductase inhibitory, anti-cataract and antioxidant potential of selected medicinal plants from the Marathwada region, India. Nat Prod Res 2011; 25:760–763.10.1080/14786419.2010.536951
]Search in Google Scholar
[
42. Don G. Catharanthus roseus. In: Ross I.A. (Ed.), Medicinal Plants of the World. Human Press, Totowa, NJ. 1999.
]Search in Google Scholar
[
43. Ingh SN, Vats P, Suri S, Shyam R, Kumria MML, Ranganathan S et al. Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J Ethnopharmacol 2001; 76:269–277. doi: http://dx.doi.org/10.1016/S0378-8741(01)00254-910.1016/S0378-8741(01)00254-9
]Search in Google Scholar
[
44. Huang J, Zhang Y, Dong L, Gao Q, Yin L, Quan H et al. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc. J Ethnopharmacol 2018; 213:280–301.10.1016/j.jep.2017.11.01029155174
]Search in Google Scholar
[
45. Lee J, Jang Sik D, Kim NH, Lee YM, Kim J, Kim JS. Galloyl glucoses from the seeds of Cornus officinalis with inhibitory activity against protein glycation, aldose reductase, and cataractogenesis ex vivo. Biol Pharma Bull 2011; 34:443–446.10.1248/bpb.34.44321372401
]Search in Google Scholar
[
46. Kubo M, Matsuda H, Tokuoka K, Kobayashi Y, Ma S, Tanaka T. Studies of anti-cataract drugs from natural sources. I. Effects of a methanolic extract and the alkaloidal components from Corydalis tuber on in vitro aldose reductase activity. Biol Pharma Bull 1994; 17:458–459.10.1248/bpb.17.4588019518
]Search in Google Scholar
[
47. A Asgary S, Naderi G, Sadeghi M, Kelishadi R, Amiri M. Antihypertensive effect of Iranian Crataegus curvisepala Lind: A randomized, double-blind study. Drugs Exper Clinic Res 2004; 30:221–225.
]Search in Google Scholar
[
48. Tadic V, Dobric S, Markovic G, Dordevic S, Arsic I, Menkovic N et al. Antiinflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of Hawthorn berries ethanol extract. J Agric Food Chem 2008; 56:7700–7709.10.1021/jf801668c18698794
]Search in Google Scholar
[
49. Veveris M, Koch E, Chatterjee S. Crataegus special extract WS (R) 1442 improves cardiac function and reduces infarct size in a rat model of prolonged coronary ischemia and reperfusion. Life Sci 2004; 74:1945–1955.10.1016/j.lfs.2003.09.05014761675
]Search in Google Scholar
[
50. Matsuda H, Morikawa T, Toguchida I, Yoshikawa M. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharma Bull 2002; 50:788–795.10.1248/cpb.50.78812045333
]Search in Google Scholar
[
51. Wang T, Zhang P, Zhao C, Zhang Y, Liu H, Hu L et al. Prevention effect in selenite-induced cataract in vivo and antioxidative effects in vitro of Crataegus pinnatifida leaves. Biol Trace Element Res 2011; 142:106–116.10.1007/s12011-010-8752-8
]Search in Google Scholar
[
52. Boaz M, Leibovitz E, Dayan YB, Wainstein J. functional foods in the treatment of type 2 diabetes: Olive leaf extract, turmeric and fenugreek, a qualitative review. J Func Foods Health Dis 2011; 1:472–481.10.31989/ffhd.v1i11.114
]Search in Google Scholar
[
53. Ramadan G, Al-Kahtani MA, El-Sayed WM. Anti-inflammatory and antioxidant properties of Curcuma longa (Turmeric) versus Zingiber officinale (Ginger) rhizomes in rat adjuvant-induced arthritis. Inflammation 2011; 34:291–301.10.1007/s10753-010-9278-0
]Search in Google Scholar
[
54. Akter J, Hossain MA, Sano A, Takara K, Islam MZ, Hou DX. Antifungal activity of various species and strains of turmeric (Curcuma spp.) against Fusarium solani sensu lato. Pharma Chem J 2018; 52:292–297.10.1007/s11094-018-1815-4
]Search in Google Scholar
[
55. Ringman JM, Frautschy SA, Cole GM, Master-man DL, Cummings JL. A potential role of the curry spice curcumin in Alzheimer’s disease. Cur Alzheimer Res 2005; 2:131–136.10.2174/1567205053585882
]Search in Google Scholar
[
56. Du ZY, Bao YD, Liu Z, Qiao W, Ma L, Huang ZS et al. Curcumin analogs as potent aldose reductase inhibitors. Archiv der Pharmazie, Chem Life Sci 2006; 339:123–128.10.1002/ardp.200500205
]Search in Google Scholar
[
57. Zhao Y, Son YO, Kim SS, Jang YS, Lee JC. Antioxidant and anti-hyperglycemic activity of polysaccharide isolated from Dendrobium chrysotoxum Lindl. J Biochem Mol Biol 2007; 40:670–677. doi: http://dx.doi.org/10.5483/bmbrep.2007.40.5.67010.5483/BMBRep.2007.40.5.670
]Search in Google Scholar
[
58. Zeng Q, Ko CH, Siu WS, Li KK, Wong CW, Han XQ et al. Inhibitory effect of different Dendrobium species on LPS-induced inflammation in macrophages via suppression of MAPK pathways. Chinese J Nat Med 2018; 16:481–489. doi: http://dx.doi.org/10.1016/S1875-5364(18)30083-910.1016/S1875-5364(18)30083-9
]Search in Google Scholar
[
59. Wu J, Li X, Wan W, Yang Q, Ma W, Chen D et al. Gigantol from Dendrobium chrysotoxum Lindl. binds and inhibits aldose reductase gene to exert its anti-cataract activity: an in vitro mechanistic study. J Ethnopharmacol 2017; 255–261. doi: http://dx.doi.org/10.1016/j.jep.2017.01.02610.1016/j.jep.2017.01.02628104409
]Search in Google Scholar
[
60. Chandra D, Chandra S, Pallavi AKS. Review of finger millet (Eleusine coracana (L.) Gaertn): A power house of health benefiting nutrients. Food Sc Human Well 2016; 5:149–155.10.1016/j.fshw.2016.05.004
]Search in Google Scholar
[
61. Chethan AS, Dharmesh SM, Malleshi NG. Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols. Bioorg Med Chem 2008; 16:10085–10090.10.1016/j.bmc.2008.10.00318976928
]Search in Google Scholar
[
62. Variya CB, Bakrania KA, Snehal SP. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res 2016; 111:180–200.10.1016/j.phrs.2016.06.01327320046
]Search in Google Scholar
[
63. Jiangsu College of New Medicine, “A dictionary of the traditional Chinese medicines,” Peoples’ Hygiene Publisher, Beijing, 1997; p. 4. In.
]Search in Google Scholar
[
64. Jang DS, Yoo NH, Kim NH, Lee YM, Kim CS, Kim J et al. 3,5-di-O-Caffeoyl-epi-quinic acid from the leaves and stems of Erigeron annuus inhibits protein glycation, aldose reductase, and cataractogenesis. Biol Pharma Bull 2010; 33:329–333.10.1248/bpb.33.32920118563
]Search in Google Scholar
[
65. Verma AR, Vijayakumar M, Rao CV, Mathela CS. In vitro and in vivo antioxidant properties and DNA damage protective activity of green fruit of Ficus glomerata. Food Chem Toxicol 2010; 48:704–709. doi: http://dx.doi.org/10.1016/j.fct.2009.11.05210.1016/j.fct.2009.11.05219951737
]Search in Google Scholar
[
66. Chopra RN, Nayar SL, Chopra IC. Glossary of indian medicinal plants. Council of Scientific and Industrial Research, NISCAIR, New Delhi; 1956; 199 p.
]Search in Google Scholar
[
67. Khan N, Sultana S. Chemomodulatory effect of Ficus racemosa extract against chemically induced renal carcinogenesis and oxidative damage response in Wistar rats. Life Sci 2005; 77:1194–1210.10.1016/j.lfs.2004.12.04115885707
]Search in Google Scholar
[
68. Manzoor RA, Dar BA, Sofi SN, Bhat BA, Qurishi MA. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arabian J Chem 2016; 9:S1574–S1583.10.1016/j.arabjc.2012.04.011
]Search in Google Scholar
[
69. Suzen S, Evcimen ND, Varol P, Sankaya M. Preliminary evaluation of rat kidney aldose inhibitory activity of 2-phenylindole derivatives: affiliation to antioxidant activity. Medicinal Chemistry Research 2007; 16:112–118.10.1007/s00044-007-9014-y
]Search in Google Scholar
[
70. Dongare V, Kulkarni C, Kondawar M, Magdum C, Haldavnekar V, Arvindekar A. Inhibition of al-dose reductase and anti-cataract action of transanethole isolated from Foeniculum vulgare Mill. fruits. Food Chem 2012; 132:385–390. doi: http://dx.doi.org/10.1016/j.foodchem.2011.11.00510.1016/j.foodchem.2011.11.00526434305
]Search in Google Scholar
[
71. Singh B, Kaur P, Gopichand SRD, Ahuja PS. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008; 79:401–418.10.1016/j.fitote.2008.05.00718639617
]Search in Google Scholar
[
72. Sati P, Dhyani P, Bhatt ID, Pandey A. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. J Trad Compl Med 2019; 9:15–23.10.1016/j.jtcme.2017.10.003633547330671362
]Search in Google Scholar
[
73. Lu Q, Yang T, Zhang M, Du L, Liu L, Zhang N et al. Preventative effects of Ginkgo biloba extract (EGb761) on high glucose-cultured opacity of rat lens. Phytother Res 2014; 28:767–773.10.1002/ptr.5060
]Search in Google Scholar
[
74. Verma PR, Joharapurkar AA, Chatpalliwar AV, Asnani AJ. Antinociceptive activity of alcoholic extract of Hemidesmus indicus R. Br. in mice. J Ethnopharmacol 2005; 102:298–301.10.1016/j.jep.2005.05.039
]Search in Google Scholar
[
75. Nagat M, Barka E, Lawrence R, Saani M. Phyto-chemical screening, antioxidant and antibacterial activity of active compounds from Hemidesmus indicus. Inter J Cur Pharma Res 2016; 8:24–27.
]Search in Google Scholar
[
76. Tirumani P, Venu S, Sridhar G, Kumar MP, Rajashekhar AV, Raju TN. Delaying of cataract through intervention of Hemidesmus indicus in STZ induced diabetic rats. Nat Prod Res 2018; 32:1295–1298.10.1080/14786419.2017.1333991
]Search in Google Scholar
[
77. Patel D, Kumar R, Kumar M, Sairam K, Hemalatha S. Evaluation of in vitro aldose reductase inhibitory potential of different fraction of Hybanthus enneaspermus Linn F. Muell. Asian Pac J Trop Biomed 2012; 2:134–139.10.1016/S2221-1691(11)60207-4
]Search in Google Scholar
[
78. Patel D, Kumar R, Prasad S, Sairam K, Hemalatha S. Antidiabetic and in vitro antioxidant potential of Hybanthus enneaspermus (Linn) F. Muell in streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed 2011; 1:316–322.10.1016/S2221-1691(11)60051-8
]Search in Google Scholar
[
79. Tripathy S, Sahoo S, Pradhan D, Sahoo S, Satapathy D. Evaluation of anti arthritic potential of Hybanthus enneaspermus. African J Pharma Pharmacol 2009; 3:611–614.
]Search in Google Scholar
[
80. Amirou A, Bnouham M, Legssyer A, Ziyyat A, Aziz M, Berrabah M et al. Effects of Juglans regia root bark extract on platelet aggregation, bleeding time, and plasmatic coagulation: in vitro and ex vivo experiments. Evid Based Compl Alter Med 2018; 2018:1–7. doi: http://dx.doi.org/10.1155/2018/731351710.1155/2018/7313517611220730186357
]Search in Google Scholar
[
81. Delaviz H, Mohammadi J, Ghalamfarsa G, Mohammadi B, Farhadi N. A review study on phyto-chemistry and pharmacology applications of Juglans regia plant. Pharmacogn Rev 2017; 11:145–152, doi:10.4103/phrev.phrev_10_17.10.4103/phrev.phrev_10_17562852128989250
]Search in Google Scholar
[
82. Toshiyuki F, Hideyuki I, Takashi Y. Effect of the walnut polyphenol fraction on oxidative stress in type 2 diabetes mice. BioFactors 2004; 21:251–253.10.1002/biof.55221014815630205
]Search in Google Scholar
[
83. Abbasi Z, Jelodar G, Geramizadeh B. Prevention of diabetic complications by walnut leaf extract via changing aldose reductase activity: An experiment in diabetic rat tissue. J Diab Res 2020. doi: http://dx.doi.org/10.1155/2020/898267610.1155/2020/8982676744823032879893
]Search in Google Scholar
[
84. Sabrin IRM, Gamal MA. Litchi chinensis: medicinal uses, phytochemistry, and pharmacology. J Ethnopharmacol 2015; 174:492–513.10.1016/j.jep.2015.08.05426342518
]Search in Google Scholar
[
85. Lee SJ, Park WH, Park SD, Moon HI. Aldose reductase inhibitors from Litchi chinensis Sonn. J Enz Inhib Med Chem 2009; 24:957–959. doi: http://dx.doi.org/10.1080/1475636080256086710.1080/14756360802560867
]Search in Google Scholar
[
86. Dixon AR, McMillen H, Etkin NL. Ferment This: The transformation of noni, a traditional polynesian medicine (Morinda citrifolia, Rubiaceae). Economic Botany 1999; 53:51–68.10.1007/BF02860792
]Search in Google Scholar
[
87. Chan-Blanco Y, Vaillant F, Mercedes Perez A, Reynes M, Brillouet JM, Brat P. The noni fruit (Morinda citrifolia L.): A review of agricultural research, nutritional and therapeutic properties. J Food Comp Analysis 2006; 19:645–654. doi: http://dx.doi.org/10.1016/j.jfca.2005.10.00110.1016/j.jfca.2005.10.001
]Search in Google Scholar
[
88. Sajjadi SE. Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran. DARU J Pharma Sci 2006; 14:128–130.
]Search in Google Scholar
[
89. Özcan M, Arslan D, Ünver A. Effect of drying methods on the mineral content of basil (Ocimum basilicum L.). J Food Engineering 2005; 69:375–379.10.1016/j.jfoodeng.2004.08.030
]Search in Google Scholar
[
90. Bhatti HA, Tehseen Y, Maryam K, Uroos M, Siddiqui BS, Hameed A et al. Identification of new potent inhibitor of aldose reductase from Ocimum basilicum. Bioorg Chem 2017; 75:62–70. doi: http://dx.doi.org/10.1016/j.bioorg.2017.08.01110.1016/j.bioorg.2017.08.011
]Search in Google Scholar
[
91. Prakash P, Gupta N. Therapeutic uses of Ocimum sanctum Linn (tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J Pharmacol 2005; 49:125–131.
]Search in Google Scholar
[
92. Chattopadhyay RR. Hypoglycemic effect of Ocimum sanctum leaf extract in normal and streptozotocin diabetic rats. Indian Journal of Experimental Biology 1993; 31: 891–893.
]Search in Google Scholar
[
93. Rai V, Iyer U, Mani UV. Effect of tulasi (Ocimum sanctum) leaf powder supplementation on blood sugar levels, serum lipids and tissue lipids in diabetic rats. Plant Foods Human Nut 1997; 50:9–16.10.1007/BF02436038
]Search in Google Scholar
[
94. Vats V, Grover JK, Rathi SS. Evaluation of anti-hyperglycemic and hypoglycemic effect of Trigonella foenum-graecum Linn, Ocimum sanctum Linn and Pterocarpus marsupium Linn in normal and alloxanized diabetic rats. J Ethnopharmacol 2002; 79:95–100.10.1016/S0378-8741(01)00374-9
]Search in Google Scholar
[
95. Sedef NEl, Karakaya S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nut Rev 2009; 67: 632–638.10.1111/j.1753-4887.2009.00248.x19906250
]Search in Google Scholar
[
96. Elimam DMA, Ibrahim ASU, Liou GI, Badria FAA. Olive and Ginkgo extracts as potential cataract therapy with differential inhibitory activity on aldose reductase. Drug Discover & Therap 2017; 22:41–46.10.5582/ddt.2016.0107128123157
]Search in Google Scholar
[
97. Makino T, Furuta Y, Wakushima H, Fujii H, Saito K, Kano Y. Anti-allergic effect of Perilla frutescens and its active constituents. Phytother Res 2003; 17:240–243.10.1002/ptr.111512672153
]Search in Google Scholar
[
98. Fujita T, Ohira K, Miyatake K, Nakano Y, Nakayama M. Inhibitory effects of perillosides a and c, and related monoterpene glucosides on aldose reductase and their structure-activity relationships. Chem Pharmal Bull 1995; 43:920–926.10.1248/cpb.43.920
]Search in Google Scholar
[
99. Bae K. The Medicinal Plants of Korea; 2002.
]Search in Google Scholar
[
100. Jang DS, Lee YM, Jeong IH, Kim JS. Constituents of the flowers of Platycodon grandiflorum with inhibitory activity on advanced glycation end products and rat lens aldose reductase in vitro. Arch Pharm Res 2010; 33:875–880.10.1007/s12272-010-0610-x
]Search in Google Scholar
[
101. Yadavra RN, Verma YA. New biologically active flavonol glycoside from Psoralea corylifolia (Linn). J Asian Nat Prod Res 2005; 7:671–675.10.1080/10286020310001608921
]Search in Google Scholar
[
102. Chino M, Sato K, Yamazaki T, Maitani T. Constituent of natural food additive hokosshi extract and an analytical method for the additive in foods. J Food Hygi Soci Japan 2002; 43:352–355.10.3358/shokueishi.43.352
]Search in Google Scholar
[
103. Kamboj J, Sharma S, Kumar S. In vivo anti-diabetic and anti-oxidant potential of Psoralea corylifolia seeds in streptozotocin induced type-2 diabetic rats. J Health Sci 2011; 57:225–235.10.1248/jhs.57.225
]Search in Google Scholar
[
104. Khatune NA, Islam ME, Khondkar P, Rahman MM. Antibacterial compounds from the seeds of Psoralea corylifolia. Fitoterapia 2004; 75:228–230.10.1016/j.fitote.2003.12.018
]Search in Google Scholar
[
105. Zhu DY, Chen ZX, Liu JS, Huang BS, Xie YY, Zeng GF. Studies on chemical constituents of Bu-Gu-Zhi, the seeds of Psoralea corylifolia. Acta Pharmacol Sinica 1979; 14:605–611.
]Search in Google Scholar
[
106. Seong SH, Roy A, Jung HA, Jung HJ, Choi JS. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory activities of Pueraria lobata root and its constituents. J Ethnopharmacol 2016; 194:706–716.10.1016/j.jep.2016.10.007
]Search in Google Scholar
[
107. Kim NH, Kim YS, Lee YM, Jang DS, Kim JS. Inhibition of aldose reductase and xylose-induced lens opacity by puerariafuran from the roots of Pueraria lobata. Biol Pharma Bull 2010; 33:1605–1609.10.1248/bpb.33.1605
]Search in Google Scholar
[
108. Lodhi S, Jain A, Jain AP, Pawar RS, Kumar A. Singhai effects of flavonoids from Martynia annua and Tephrosia purpurea on cutaneous wound healing. Avicenna J Phytomed 2016; 6:578–591.
]Search in Google Scholar
[
109. Nadkarni AK. Tinospora cordifolia. Indian Mate-ria Medica; Prakashan, P., Ed.; 3rd ed.; Bombay, 1954.
]Search in Google Scholar
[
110. Stanely P, Prince M, Menon VP. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J Ethnopharmacol 2000; 70:9–15. doi: http://dx.doi.org/10.1016/S0378-8741(99)00136-110.1016/S0378-8741(99)00136-1
]Search in Google Scholar
[
111. Peer F, Sharma MC. Therapeutic evaluation of Tinospora cordifolia in CCl4 induced hepatopathy in goats. Indian J Veter Med 1989; 9:154–156.
]Search in Google Scholar
[
112. Atal CK, Sharma ML, Kaul A, Khajuria A. Immunomodulating agents of plant origin. 1. Preliminary screening. J Ethnopharmacol 1986; 18:133–141.10.1016/0378-8741(86)90025-5
]Search in Google Scholar
[
113. Vedavathy S, Rao KN. Antipyretic activity of six indigenous medicinal plants of Tirumala hills, Andhra pradesh, India. J Ethnopharmacol 1991; 33:1–2.10.1016/0378-8741(91)90178-G
]Search in Google Scholar
[
114. Sarma DNK, Khosa RL, Chansouria JPN, Sahai M. Antistress activity of Tinospora cordifolia and Centella asiatica extracts. Phytother Res 1996; 10:181–183.10.1002/(SICI)1099-1573(199603)10:2<181::AID-PTR804>3.0.CO;2-6
]Search in Google Scholar
[
115. Pavin NF, Izaguirry AP, Soares MB, Spiazzi CC, Mendez ASL, Leivas FG. Daniela dos Santos Brum, F.W.S.C. Tribulus terrestris protects against male reproductive damage induced by cyclophosphamide in mice. Oxid Med Cell Longv 2018; 9. doi: http://dx.doi.org/org/10.1155/2018/575819110.1155/2018/5758191
]Search in Google Scholar
[
116. Akram M, Asif HM, Akhtar N. Tribulus terrestris Linn: A review article. J Med Plants Res 2011; 5:3601–3605.
]Search in Google Scholar
[
117. Shin KH, Kang SS, Kim HJ, Shin SW. Isolation of an aldose reductase inhibitor from the fruits of Vitex rotundifolia: part 2 in the series “Studies on the inhibitory effects of medicinal plant constituents on cataract formation.” Phytomed 1994; 1:145–147. doi: http://dx.doi.org/10.1016/S0944-7113(11)80033-410.1016/S0944-7113(11)80033-4
]Search in Google Scholar
[
118. Muzamil A, Nawab JD. Withania somnifera: Ethnobotany, pharmacology, and therapeutic functions. Sustained energy for enhanced human functions and activity 2017; 137–154. doi: http://dx.doi.org/10.1016/B978-0-12-805413-0.00008-910.1016/B978-0-12-805413-0.00008-9
]Search in Google Scholar
[
119. Machiah DK, Girish KS, Gowda TV. A Glyco-protein from a folk medicinal plant, Withania somnifera, inhibits hyaluronidase activity of snake venoms. Physiol Part C: Toxicol Pharmacol 2006; 143:158–161.
]Search in Google Scholar
[
120. Akhani SP, Vishwakarma SL, Goyal RK. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type 1 diabetic rats. J Pharm Pharmacol 2004; 56:101–105. doi: http://dx.doi.org/10.1211/002235702240310.1211/0022357022403
]Search in Google Scholar
[
121. Kato A, Higuchi Y, Hirozo G, Haruhisa K, Tadashi O, Asano N et al. Inhibitory effects of Zingiber officinale Roscoe derived components on aldose reductase activity in vitro and in vivo. J Agric and Food Chem 2006; 54:6640–6644.10.1021/jf061599a
]Search in Google Scholar
[
122. Kaur A, Gupta V, Francis A, Ahmad M, Bansal P. Nutraceuticals in prevention of cataract – an evidence based approach. Saudi J Ophthalmol 2016. doi: http://dx.doi.org/10.1016/j.sjopt.2016.12.00110.1016/j.sjopt.2016.12.001
]Search in Google Scholar
[
123. Krief S. Metabolites secondaires des plantes et comportement animal: surveillance sanitaire et observations de l’alimentation de chimpanzes (pan troglodytes schweinfurthii) en ouganda\ nactivites biologiques et etude chimique de plantes consommees. Ecologie et Chimie des Substances Naturelles 2003; France,346.
]Search in Google Scholar
[
124. Zhu X, Zhang S, Chang R, Lu Y. New cataract markers: Mechanisms of disease. Clinica Chimica Acta 2017; 472:41–45. doi: http://dx.doi.org/10.1016/j.cca.2017.07.01010.1016/j.cca.2017.07.010
]Search in Google Scholar
[
125. Kowluru RA, Zhong Q, Santos JM. Thandampallayam M, Putt D, Gierhart DL. Beneficial effects of the nutritional supplements on the development of diabetic retinopathy. Nutr Metab 2014; 11(1):8.10.1186/1743-7075-11-8
]Search in Google Scholar
[
126. Lee AYW, Chung SSM. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 1999; 13(1):23-30.10.1096/fasebj.13.1.239872926
]Search in Google Scholar
[
127. Shiels A, Hejtmancik JF. Genetic origins of cataract. Archiv Ophthal. 2007; 125(2):165-73.10.1001/archopht.125.2.16517296892
]Search in Google Scholar
[
128. Drinkwater JJ, Davis WA, Davis TME. A systematic review of risk factors for cataract in type 2 diabetes. Diab/Metab Res Rev 2019; 35(1):e3073.10.1002/dmrr.307330209868
]Search in Google Scholar
[
129. Berthélémy S. La cataracte. Actualités pharmaceutiques 2016; 55:39–42. doi: http://dx.doi.org/10.1016/j.actpha.2016.06.01610.1016/j.actpha.2016.06.016
]Search in Google Scholar
[
130. Robman L, Taylor H. External factors in the development of cataract. Eye 2005; 19(10):1074-82.10.1038/sj.eye.670196416304587
]Search in Google Scholar
[
131. Toh TY, Morton J, Coxon J, Elder MJ. Medical treatment of cataract. Clinic Experiment Ophthalmol 2007; 35:664–671. doi: http://dx.doi.org/10.1111/j.1442-9071.2007.01559.x10.1111/j.1442-9071.2007.01559.x17894689
]Search in Google Scholar
[
132. Renouvin A, Fournié P, Soler V. Les évolutions dans le traitement de la cataracte. NPG Neurologie - Psychiatrie - Geriatrie 2016; 16:64–72. doi: http://dx.doi.org/10.1016/j.npg.2015.10.01010.1016/j.npg.2015.10.010
]Search in Google Scholar
[
133. Pollreisz A, Schmidt-Erfurth U. Diabetic cataract – pathogenesis, epidemiology and treatment. Journal of Ophthalmology 2010; 2010:e608751.10.1155/2010/608751290395520634936
]Search in Google Scholar
[
134. Srinivasan K. Chapter 42 - Polyphenols in vision and eye health. Editor Victor R. Preedy, Handbook of Nutrition, Diet and the Eye. 2014; 413-421p.10.1016/B978-0-12-401717-7.00042-3
]Search in Google Scholar
[
135. Mathebula SD. Polyol pathway: A possible mechanism of diabetes complications in the eye. African Vision and Eye Health 2015; 74(1):5.10.4102/aveh.v74i1.13
]Search in Google Scholar
[
136. Newell FW. Ophthalmology: Principles and concepts. 5th edition. St. Louis: C.V. Mosby Company; 1982; 559p.
]Search in Google Scholar
[
137. Seelinger G, Merfort I, Schempp C. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med 2008; 74:1667–1677.10.1055/s-0028-1088314
]Search in Google Scholar
[
138. Park C, Song YS. Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of nf-κb/ap-1/pi3k-akt signaling cascades in raw 264.7 cells. Nut Res Pract 2013; 7:423–429.10.4162/nrp.2013.7.6.423
]Search in Google Scholar
[
139. Zang Y, Igarashi K, Li Y. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on kka(y) mice. Biosci, Biotechnol, Biochem 2016; 80:1580–1586.10.1080/09168451.2015.1116928
]Search in Google Scholar
[
140. Xu N, Zhang L, Dong J, Al E. Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice. Mol Nut Food Res 2014; 58:1258–1268.10.1002/mnfr.201300830
]Search in Google Scholar
[
141. Chang K, Li L, Sanborn TM, Shieh B, Lenhart P, Ammar D et al. Characterization of emodin as a therapeutic agent for diabetic cataract. J Nat Prod 2016; 79:1439–1444. doi: http://dx.doi.org/10.1021/acs.jnatprod.6b0018510.1021/acs.jnatprod.6b00185
]Search in Google Scholar
[
142. Higashi Y, Higashi K, Mori A, Sakamoto K, Ishii K, Nakahara T. Anti-cataract effect of resveratrol in high-glucose-treated streptozotocin-induced diabetic rats. Biol Pharmal Bull 2018; 41:1586–1592.10.1248/bpb.b18-00328
]Search in Google Scholar
[
143. Kim J, Kim C, Sohn E, Lee Y, Kim J. KIOM-79 inhibits aldose reductase activity and cataractogenesis in zucker diabetic fatty rats. J Pharm Pharmacol 2011; 63:1301–1308.10.1111/j.2042-7158.2011.01341.x
]Search in Google Scholar
[
144. Moghaddam M, Kumar P, Reddy G, Ghole V. Effect of diabecon on sugar-induced lens opacity in organ culture: mechanism of action. J Ethnopharmacol 2005; 97:397–403.10.1016/j.jep.2004.11.032
]Search in Google Scholar
[
145. Gandhi M, Lal R, Sankaranarayanan A, Banerjee CK, Sharma PL. Acute toxicity study of the oil from Azadirachta indica seed (neem oil). J Ethnopharmacol 1988; 23:39–51.10.1016/0378-8741(88)90113-4
]Search in Google Scholar
[
146. Kevin L, Hussin A, Zhari I, Chin J. Sub–acute oral toxicity study of methanol leaves extract of Catharanthus roseus in rats. J Acute Dis 2012; 1:38–41. doi: http://dx.doi.org/10.1016/S2221-6189(13)60009-810.1016/S2221-6189(13)60009-8
]Search in Google Scholar
[
147. Venâncio A, Onofre A, Lira A, Alves P, Blank A, Antoniolli  et al. Chemical composition, acute toxicity, and antinociceptive activity of the essential oil of a plant breeding cultivar of basil (Ocimum basilicum L.). Planta Med 2011; 77:825–829. doi: http://dx.doi.org/10.1055/s-0030-125060710.1055/s-0030-125060721157680
]Search in Google Scholar
[
148. Takizawa T, Imai T, Mitsumori K, Takagi H, Onodera H, Yasuhara K et al. Gonadal toxicity of an ethanol extract of Psoralea corylifolia in a rat 90-day repeated dose study. The J Toxicol Sci 2002; 27:97–105. doi: http://dx.doi.org/10.2131/jts.27.9710.2131/jts.27.9712058452
]Search in Google Scholar
[
149. Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother 2017; 96:305–312. doi: http://dx.doi.org/10.1016/j.biopha.2017.10.00110.1016/j.biopha.2017.10.00129017142
]Search in Google Scholar
[
150. Ma HY, Gao HY, Jian LS, Huang Xiao-Min, Wu XJ. Constituents with α-glucosidase and advanced glycation end-product formation inhibitory activities from Salvia miltiorrhiza Bge. J Nat Med 2011; 65:37–42.10.1007/s11418-010-0453-220835851
]Search in Google Scholar
[
151. da Silva SB, Ferreira D, Pintado M, Sarmento B. Chitosan-based nanoparticles for rosmarinic acid ocular delivery – in vitro tests. Inter J Biol Macromol 2016; 84:112–120. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.11.07010.1016/j.ijbiomac.2015.11.07026645149
]Search in Google Scholar
[
152. KentaroTsuji-Naito, Saeki H, Hamano M. Inhibitory effects of Chrysanthemum species extracts on formation of advanced glycation end products. Food Chem 2009; 116:854–859.10.1016/j.foodchem.2009.03.042
]Search in Google Scholar
[
153. Gugliucci A, Bastosa DHM, Schulze J, Souza MFF. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of age generation by methylglyoxal in model proteins. Fitoterapia 2009; 80:339–344.10.1016/j.fitote.2009.04.00719409454
]Search in Google Scholar
[
154. Lee EH, Song DG, Lee JY, Pan CH, Um BH, Jung SH. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation end products. Biol Pharma Bull 2008; 31:1626–1630.10.1248/bpb.31.162618670102
]Search in Google Scholar