1. bookVolume 68 (2022): Issue 1 (March 2022)
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Evaluation of antioxidant activity of extracts from Leucosidea sericea

Published Online: 09 May 2022
Volume & Issue: Volume 68 (2022) - Issue 1 (March 2022)
Page range: 10 - 18
Received: 30 Sep 2021
Accepted: 16 Nov 2021
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
Summary

Introduction: Leucosidea sericea finds applications in the treatment of herpes and HIV.

Objective: The aim of the current study was to evaluate the antioxidant activity and determine the total flavonoid contents (TFCs) and total phenolic contents (TPCs) of hexane, chloroform, ethyl acetate, acetone and methanol crude extracts obtained from leaves and stem-bark of L. sericea.

Methods: Maceration and hot solvent extraction methods were used to obtain various crude extracts. DPPH and ferric reducing power assays were used to evaluate the antioxidant activity. Colorimetric aluminium chloride and Folin-Ciocalteu methods were used to determine the TFCs and TPCs, respectively.

Results: The methanol leaf extract showed highest radical scavenging activity of 82.00±0.93% at a concentration of 3000 µg/ml followed by ethyl acetate leaf extract and methanol stem-bark extract with 79.40±5.21 and 75.16±1.15%, respectively. Acetone stem-bark extract showed highest ferric reducing power of 0.539±0.004 at 700 nm at a concentration of 100 µg/ml followed by hexane leaf extract and hexane stem-bark extract with 0.474±0.014 and 0.437±0.013 at 700 nm, respectively. Ethyl acetate stem-bark extract showed highest TFCs of 655.6±0.1111 mg QE/g of DW of the extract followed by acetone stem-bark extract with 450.0±0.00711 mg QE/g of DW of the extract. Acetone stem-bark extract showed highest TPCs of 891.9±0.657 mg TAE/g of the DW of extract followed by methanol stem-bark extract with 878.3±0.029 mg TAE/g of DW of the extract.

Conclusion: The antioxidant activity of various solvent extracts from leaves and stem-bark of L. sericea was evaluated. L. sericea could be a source of potent antioxidants.

Keywords

1. Mafole TC, Aremu AO, Mthethwa T, Moyo M. An overview on Leucosidea sericea Eckl. & Zeyh. A multi-purpose tree with potential as a phytomedicine. J Ethnopharmacol 2017; 203:288-303. doi: https://dx.doi.org/10.1016/j.jep.2017.03.04410.1016/j.jep.2017.03.044 Search in Google Scholar

2. Kose SL, Moteetee A, Vuuren VS. Ethnobotanical survey of medicinal plants used in the Maseru district of Lesotho. J Ethnopharmacol 2015; 170:184-200. doi: https://dx.doi.org/10.1016/j.jep.2015.04.04710.1016/j.jep.2015.04.047 Search in Google Scholar

3. Moteetee A, van Wyk BE. The medicinal ethnobotany of Lesotho: a review. Bothalia 2011; 41(1):209-228. doi: https://dx.doi.org/10.4102/abc.v41i1.5210.4102/abc.v41i1.52 Search in Google Scholar

4. Srinivasa CP, Adeyemi OA, Lenka PS, Lucie R, Jiri G, Karel D et al. Identification and characterization of potential bioactive compounds from the leaves of Leucosidea sericea. J Ethnopharmacol 2018; 220:169-176. doi: https://dx.doi.org/10.1016/j.jep.2018.03.03510.1016/j.jep.2018.03.035 Search in Google Scholar

5. Nair JJ, Aremu AO, Van Staden J. Anti-inflammatory effects of Leucosidea sericea (Rosaceae) and identification of the active constituents. S Afr J Bot 2012; 80:75-76. doi: https://dx.doi.org/10.1016/j.sajb.2012.02.00910.1016/j.sajb.2012.02.009 Search in Google Scholar

6. Aremu AO, Amoo SO, Ndhlala AR, Finnie JF, Van Staden J. Antioxidant activity, acetylcholinesterase inhibition, iridoid content and mutagenic evaluation of Leucosidea sericea. Food Chem Toxicol 2011; 49:1122–1128.10.1016/j.fct.2011.02.003 Search in Google Scholar

7. Adamu M, Naidoo V, Eloff JN. Some southern African plant species used to treat helminth infections in ethnoveterinary medicine have excellent antifungal activities. BMC Complement Altern Med 2012; 12:213-220. doi: https://dx.doi.org/10.1186/1472-6882-12-21310.1186/1472-6882-12-213 Search in Google Scholar

8. Mafole TC, Aremu AO, Mthethwa T, Moyo M. An overview on Leucosidea sericea Eckl. & Zeyh. A multi-purpose tree with potential as a phyto-medicine. J. Ethnopharmacol 2017; 203:288-303. doi: https://dx.doi.org/10.1016/j.jep.2017.03.04410.1016/j.jep.2017.03.044 Search in Google Scholar

9. Kose SL, Moteetee A. A review of medicinal plants used by Basotho for treatment of skin disorders: Their phytochemical, antimicrobial and anti-inflammatory potential. Afr J Tradit Complement Altern Med 2017; 14(5):121-137. doi: https://dx.doi.org/10.21010/ajtcam.v14i5.1610.21010/ajtcam.v14i5.16 Search in Google Scholar

10. Magama S, Lieta MI, Asita AO. Antioxidant and free radical scavenging properties of four lant species used in traditional medicine in Lesotho. Int J Med Plant Res 2013; 2(3):170-178. Search in Google Scholar

11. Bosman AA, Combrinck S, Roux-van der Merwe R, Botha BM, McCrindle RI. Isolation of an anthelmintic compound from Leucosidea sericea. S Afr J Bot 2004; 70(4):509-511. doi: https://dx.doi.org/10.1016/S0254-6299(15)30189-710.1016/S0254-6299(15)30189-7 Search in Google Scholar

12. Adamu M, Mukandiwa L, Awouafack MD, Ahmed AS, Eloff JN, Naidoo V. Ultrastructure changes induced by the phloroglucinol derivative agrimol G isolated from Leucosidea sericea in Haemonchus contortus. Exp Parasitol 2019; 207:107780. doi: https://dx.doi.org/10.1016/j.exppara.2019.10778010.1016/j.exppara.2019.107780 Search in Google Scholar

13. Sharma R, Kishore N, Hussein A, Lall N. The potential of Leucosidea sericea against Propionibacterium acnes. Phytochem Lett 2014; 7:124–129. https://dx.doi.org/10.1016/j.phytol.2013.11.00510.1016/j.phytol.2013.11.005 Search in Google Scholar

14. Umar MB, Enas I, Adewale OA, Subelia B, Jelili AB, Jeanine LM et al. Green synthesis of gold nanoparticles capped with procyanidins from Leucosidea sericea as potential antidiabetic and antioxidant agents. Biomolecules 2020; 10:452. doi: https://dx.doi.org/10.3390/biom1003045210.3390/biom10030452 Search in Google Scholar

15. Adeyemi OA, Stephen OA, Ashwell RN, Jeffrey FF, Johannes VS. Antioxidant activity, acetylcho-line esterase inhibition, iridoid content and mutagenic evaluation of Leucosidea sericea. Food Chem Toxicol 2011; 49:1122-1128. doi: https://dx.doi.org/10.1016/j.fct.2011.02.00310.1016/j.fct.2011.02.003 Search in Google Scholar

16. Matamane PR, Pillai MK, Magama S. DPPH radical scavenging activity of extracts from Urtica urens (Urticaceae). J Med Plants Res 2020; 14(5):232-238. doi: https://dx.doi.org/10.5897/JMPR2019.688010.5897/JMPR2019.6880 Search in Google Scholar

17. Mokoroane KT, Pillai MK, Magama S. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of extracts from Aloiampelos striatula. Food Res 2020; 4(6):2062-2066. doi: https://dx.doi.org/10.26656/fr.2017.4(6).24110.26656/fr.2017.4(6).241 Search in Google Scholar

18. Om PS, Tej KB. DPPH antioxidant assay revisited. Food Chem 2009; 113:1202–1205. doi: https://dx.doi.org/10.1016/j.foodchem.2008.08.00810.1016/j.foodchem.2008.08.008 Search in Google Scholar

19. Sascha CTN, Herbert WJ. Optimized DPPH assay in a detergent-based buffer system for measuring antioxidant activity of proteins. MethodsX 2014; 1:233–238. doi: https://dx.doi.org/10.1016/j.mex.2014.10.00410.1016/j.mex.2014.10.004426877225530949 Search in Google Scholar

20. Maura F, Andrea G, Annalisa T. Optimisation of assay conditions for the determination of antioxidant capacity and polyphenols in cereal food components. J Food Compos Anal 2013; 30:94-101. doi: http://dx.doi.org/10.1016/j.jfca.2013.02.00 Search in Google Scholar

21. Saeed N, Khan M, Shabbir M. Antioxidant activity, total phenolic and flavonoid contents of whole plant extracts Torris leptophylla L. BMC Complement Altern Med 2012; 12:221(1-12). doi: https://dx.doi.org/10.1186/1472-6882-12-22110.1186/1472-6882-12-221352476123153304 Search in Google Scholar

22. Zhong Y, Shahidi F. Methods for the assessment of antioxidant activity in foods. In: Handbook of antioxidants for food preservation. Cambridge. Woodhead Publishing, 2015. doi: https://dx.doi.org/10.1016/B978-1-78242-089-7.00012-910.1016/B978-1-78242-089-7.00012-9 Search in Google Scholar

23. Vijayalakshmi M, Ruckman K. Ferric reducing antioxidant power assay in plant extract. Bangladesh J Pharmacol 2016; 11:570-572. doi: https://dx.doi.org/10.3329/bjp.v11i3.2766310.3329/bjp.v11i3.27663 Search in Google Scholar

24. Nirmala P, Pramod KJ, Pankaj PR, Sangeeta R. Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. Sci World J 2020; ID8780704:1-7. doi: https://dx.doi.org/10.1155/2020/878070410.1155/2020/8780704710245332256249 Search in Google Scholar

25. Sharma M, Joshi S. Comparison of antioxidant activity of Andrographis paniculata and Tinospora cordifolia leaves. J Curr Chem Pharm Sci 2011; 1(1):1-8. Search in Google Scholar

26. Salah N, Miller NJ, Paganga G, Tijburg J, Bol-well GP, Rice-Evan C. Polyphenolic flavonols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 1995; 322:339-346. doi: https://dx.doi.org/10.1006/abbi.1995.147310.1006/abbi.1995.14737574706 Search in Google Scholar

27. Waladkhani A, Clemens MR. Effect of dietary phytochemicals on cancer development. Int J Mol Med 1998; 7:747-753. doi: https://dx.doi.org/10.3892/ijmm.1.4.74710.3892/ijmm.1.4.7479852292 Search in Google Scholar

28. Siddeeg A, AlKehayez NM, Abu-Hiamed HA, Al-Sanea EA, Al-Farga AM. Mode of action and determination of antioxidant activity in the dietary sources: An overview. Saudi J Biol Sci 2021; 28(3):1633-1644. doi: https://dx.doi.org/10.4102/abc.v41i1.5210.4102/abc.v41i1.52 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo