Carica papaya L. belongs to Caricaceae family. It is an evergreen tree or shrub with usually unbranched trunk. Previous studies on the methanolic leaf extract of this plant proved the antibacterial, cytotoxic, anticancer and antioxidant effects indicative of promising therapeutic potentials.
Methods
Chromatographic and spectroscopic techniques along with high performance liquid chromatography quantitative analysis were performed to isolate, tentatively identify and quantify polyphenolic compounds in MeOH extract of C. papaya leaves. UHPLC-DAD-ESI-MS/MS and UHPLC-DAD methods were adopted for qualitative and quantitative analysis respectively. In the case of polyphenol separation, some reference substances were isolated by preparative HPLC.
Results
Six polyphenols were isolated and quantified from C. papaya leaf extract, including three phenolic acids: derivatives of caffeic acid, p-coumaric acid, ferulic acid and three flavonoids: quercetin dirhamnosylhexoside, kaempferol dirhamnosyl-hexoside, quercetin 3-O-rutinoside. Among them quercetin dirhamnosyl-hexoside was significantly higher (1.9 mg/g extract) than other identified compounds.
Conclusion
The results of present study provide a new data on polyphenols composition of C. papaya plant derived from Uganda and promote research on its possible standardization and use as a dietary supplement and/or herbal medicine.
Dhiman A, Sharma K, Sharma A, Sindhu P. A review on the status of quality control and standardization of herbal drugs in India. Drug Dev Ther 2016; 7(2):107-112. doi:http://dx.doi.org/10.4103/2394-6555.19116510.4103/2394-6555.191165Search in Google Scholar
Hussein RA, El-Anssary AA. Plant Secondary Metabolites: The Key Derivers of the Pharmacological Actions of Medicinal Plants. In: Philip Builders, ed. Herbal Medicine. London. IntechO-pen 2019:12-30. doi:http://dx.doi.org/10.5772/intechopen.7613910.5772/intechopen.76139Search in Google Scholar
Zhang L, Wang X, Guo J, Xia Q, Zhao G, Zhou H, Xie F. Metabolic profiling of Chinese tobacco leaf of different geographical origins by GC-MS. J Agric Food Chem 2013; 61(11):2597-2605. doi:http://dx.doi.org/10.1021/jf400428t10.1021/jf400428t23441877Search in Google Scholar
Saini SA, Dhiman AN, Nanda SA. Pharmacognostical and phytochemical studies of Piper betle Linn. leaf. Int J Pharm Pharm Sci 2016; 8(5):222-226.Search in Google Scholar
Silva JD, Rashid Z, Nhut DT, Sivakumar D, Gera A, Souza MT, Tennant P. Papaya (Carica papaya L.) biology and biotechnology. Tree For Sci Biotech 2007; 1(1):47-73.Search in Google Scholar
Maisarah AM, Asmah R, Fauziah O. Proximate analysis, antioxidant and anti-proliferative activities of different parts of Carica papaya. J Tissue Sci Eng 2014; 4(2):267-274. doi:http://dx.doi.org/10.4172/2155-9600.100026710.4172/2155-9600.1000267Search in Google Scholar
Krishna KL, Paridhavi M, Patel JA. Review on nutritional, medicinal and pharmacological properties of papaya (Carica papaya Linn.). Nat Prod Radiance 2008; 7(4):364-373.Search in Google Scholar
Fauziya S, Krishnamurthy R. Papaya (Carica papaya): Source material for anticancer. CIBTech J Pharm Sci 2013; 2(1):25-34.Search in Google Scholar
Rumiyati, Sismindari dan Ariyani. Effect of the protein fraction of Carica papaya L. leaves on the expressions of P53 and BCL-2 in breast cancer cells line. Maj Farm Indones 2006; 17(4):170-176. doi:http://dx.doi.org/10.14499/indonesian-jpharm0iss0pp170-176Search in Google Scholar
Rashed KN, Fouche G. Anticancer activity of Carica papaya extracts in vitro and phyto-chemical analysis. Greener J Pharm Pharmacol 2013; 1(1):1-5. doi:http://dx.doi.org/10.15580/GJPP.2013.1.EB0809131010.15580/GJPP.2013.1.EB08091310Search in Google Scholar
Hasimun P, Ernasari GI. Analgetic activity of papaya (Carica papaya L.) leaves extract. Procedia Chemistry 2014; 13:147-149. doi:http://dx.doi.org/10.1016/j.proche.2014.12.01910.1016/j.proche.2014.12.019Search in Google Scholar
Nguyen TT, Shaw PN, Parat MO, Hewavitharana AK. Anticancer activity of Carica papaya: A review. Mol Nutr Food Res 2013; 57(1):153-164. doi:http://dx.doi.org/10.1002/mnfr.20120038810.1002/mnfr.20120038823212988Search in Google Scholar
Emeruwa AC. Antibacterial substance from Carica papaya fruit extract. J Nat Prod 1982; 45(2):123-127. doi:http://dx.doi.org/10.1021/np50020a00210.1021/np50020a0027097295Search in Google Scholar
Gupta A, Wambebe CO, Parsons DL. Central and cardiovascular effects of the alcoholic extract of the leaves of Carica papaya. Int J Crude Drug Res 1990; 28(4):257-266. doi:http://dx.doi.org/10.3109/1388020900908283010.3109/13880209009082830Search in Google Scholar
Nugroho A, Heryani H, Choi JS, Park HJ. Identification and quantification of flavonoids in Carica J. Nowak, A. K. Kiss, Ch. Wambebe, E. Katuura, Ł. Kuźma papaya leaf and peroxynitrite-scavenging activity. Asian Pac J Trop Biomed 2017; 7(3):208-213. doi:http://dx.doi.org/10.1016/j.apjtb.2016.12.00910.1016/j.apjtb.2016.12.009Search in Google Scholar
Rivera‐Pastrana DM, Yahia EM, González‐Aguilar GA. Phenolic and carotenoid profiles of papaya fruit (Carica papaya L.) and their contents under low temperature storage. J Sci Food Agric 2010; 90(14):358-2365. doi:http://dx.doi.org/10.1002/jsfa.409210.1002/jsfa.4092Search in Google Scholar
Upgade A, Bhaskar A. Characterization and medicinal importance of phytoconstituents of C. papaya from down south Indian region using gas chromatography and mass spectroscopy. Asian J Pharm Clinical Res 2013; 6:101-106.Search in Google Scholar
Ong ES. Extraction methods and chemical standardization of botanicals and herbal preparations. J Chromatography B 2004; 812(1-2):23-33. doi:https://dx.doi.org/10.1016/j.jchromb.2004.07.04110.1016/S1570-0232(04)00647-6Search in Google Scholar
Lin LZ, Harnly JM. Phenolic compounds and chromatographic profiles of pear skins (Pyrus spp.). J Agric Food Chem 2008; 56(19):9094-9101. doi:http://dx.doi.org/10.1021/jf801348710.1021/jf801348718778075Search in Google Scholar
Regos I, Urbanella A, Treutter D. Identification and quantification of phenolic compounds from the forage legume sainfoin (Onobrychis viciifolia). J Agric Food Chem 2009; 57(13):5843-5852. doi:http://dx.doi.org/10.1021/jf900625r10.1021/jf900625r19456170Search in Google Scholar
Fernández-Poyatos MD, Llorent-Martínez EJ, Ruiz-Medina A. Phytochemical composition and antioxidant activity of Portulaca oleracea: influence of the steaming cooking process. Foods 2021; 10(1):94. doi:http://dx.doi.org/10.3390/foods1001009410.3390/foods10010094782489833466382Search in Google Scholar
Barros L, Pereira E, Calhelha RC, Dueñas M, Carvalho AM, Santos-Buelga C, Ferreira IC. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J Funct Foods 2013; 5(4):1732-1740. doi:https://dx.doi.org/10.1016/j.jff.2013.07.01910.1016/j.jff.2013.07.019Search in Google Scholar
Truchado P, Ferreres F, Bortolotti L, Sabatini AG, Tomás-Barberán FA. Nectar flavonol rhamnosides are floral markers of acacia (Robinia pseudacacia) honey. J Agric Food Chem 2008; 56(19):8815-8824.https://doi.org/10.1021/jf801625t10.1021/jf801625t18729455Search in Google Scholar
Sobral F, Calhelha RC, Barros L, Dueñas M, Tomás A, Santos-Buelga C et al. Flavonoid composition and antitumor activity of bee bread collected in northeast Portugal. Molecules 2017; 22(2):248. doi:https://dx.doi.org/10.3390/molecules2202024810.3390/molecules22020248615566428178217Search in Google Scholar
Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors. Molecules 2018; 23(4):762. doi:https://dx.doi.org/10.3390/molecules2304076210.3390/molecules23040762601724929584636Search in Google Scholar
Campostrini E, Glenn DM. Ecophysiology of papaya: a review. Braz J Plant Physiol 2007; 19: 413-424. doi:https://dx.doi.org/10.1590/S1677-0420200700040001010.1590/S1677-04202007000400010Search in Google Scholar
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bio-availability. Am J Clin Nutr 2004; 79(5):727-747. doi:https://dx.doi.org/10.1093/ajcn/79.5.72710.1093/ajcn/79.5.727Search in Google Scholar
David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn Rev 2016; 10(20):84-89. doi:https://dx.doi.org/10.4103/0973-7847.19404410.4103/0973-7847.194044Search in Google Scholar
Dormán G, Flachner B, Hajdú I, András C. Target identification and polypharmacology of nutraceuticals. In: Nutraceuticals. Academic Press 2016:263-286. doi:https://dx.doi.org/10.1016/B978-0-12-802147-7.00021-8-8Search in Google Scholar
Godlewska-Żyłkiewicz B, Świsłocka R, Kalinowska M, Golonko A, Świderski G, Arciszewska Ż et al. Biologically active compounds of plants: etructure-related antioxidant, microbiological and cytotoxic activity of selected carboxylic acids. Materials 2020; 13(19):4454. doi:https://dx.doi.org/10.3390/ma1319445410.3390/ma13194454Search in Google Scholar
Birková A, Hubková B, Bolerázska B, Mareková M, Čižmárová B. Caffeic acid: a brief overview of its presence, metabolism, and bioactivity. Bioact Compd Health Dis 2020; 3(4):74-81.doi:https://dx.doi.org/10.31989/bchd.v3i4.69210.31989/bchd.v3i4.692Search in Google Scholar
Kim JK, Park SU. A recent overview on the biological and pharmacological activities of ferulic acid. EXCLI J 2019; 18:132-138. doi:http://dx.doi.org/10.17179/excli2019-1138Search in Google Scholar
Soib HH, Ismail HF, Ya’akob H, Idris MKH, Aziz A. Effect of extraction solvents on antioxidant and wound healing properties of Carica papaya leaves extract. Food Res 2020; 4(S2). doi: https://dx.doi.org/10.26656/fr.2017.4(S2).S0310.26656/fr.2017.4(S2).S03Search in Google Scholar