1. bookVolume 67 (2021): Issue 4 (December 2021)
Journal Details
First Published
04 Apr 2014
Publication timeframe
4 times per year
access type Open Access

Kinetic study on peroxidase inactivation and anthocyanin degradation of black cherry tomatoes (Solanum lycopersicum cv. OG) during blanching

Published Online: 02 Feb 2022
Volume & Issue: Volume 67 (2021) - Issue 4 (December 2021)
Page range: 60 - 69
Received: 30 Jul 2021
Accepted: 15 Nov 2021
Journal Details
First Published
04 Apr 2014
Publication timeframe
4 times per year
Summary Introduction

Blanching is a necessary treatment stage in processing of tomato products to inactivate enzymes. However, it may cause the degradation of nutrients.


In this study, the kinetics of thermal peroxidase inactivation and anthocyanin degradation in black cherry tomatoes (cv. OG) were determined to predict the quality changes during the blanching.


Tomatoes were blanched at five levels of temperature (75–95oC) for five time periods (30–150 s).


It was found that as the blanching temperature increased and the blanching time is prolonged, more peroxidase was inactivated and the greater number of anthocyanins was lost. The thermal peroxidase inactivation and anthocyanin degradation showed an apparent first-order reaction with the activation energy of 129.96 kJ/mol and 65.99 kJ/mol, respectively. Peroxidase and anthocyanin in black cherry tomatoes were found to be heat-sensitive.


These kinetic parameters were necessary to select and design appropriate blanching conditions for black cherry tomatoes on larger scale processing.


Zhang W, Xie F, Lan X, Gong S, Wang Z. Characteristics of pectin from black cherry tomato waste modified by dynamic high-pressure microfluidization. J Food Eng 2018; 216:90-97. doi:https://doi.org/10.1016/j.jfoodeng.2017.07.03210.1016/j.jfoodeng.2017.07.032Search in Google Scholar

Constantino LV, Rossetto LM, Benassi MT, Oliveira C, Zeffa DM, Koltun A et al. Physico-biochemical characterization of mini-tomatoes and internal preference mapping based on consumer acceptance. Sci Hortic 2021; 282:110034. doi:https://doi.org/10.1016/j.scienta.2021.11003410.1016/j.scienta.2021.110034Search in Google Scholar

Li H, Deng Z, Liu R, Young JC, Zhu H, Loewen S, Tsao R. Characterization of phytochemicals and antioxidant activities of a purple tomato (Solanum lycopersicum L.). J Agric Food Chem 2011; 59(21):11803-11811. doi:https://doi.org/10.1021/jf202364v10.1021/jf202364v21905736Search in Google Scholar

Liu Y, Tikunov Y, Schouten RE, Marcelis LF, Visser RG, Bovy A. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review. Front Chem 2018; 6:52. doi:https://doi.org/10.3389/fchem.2018.0005210.3389/fchem.2018.00052585506229594099Search in Google Scholar

Xiao HW, Bai JW, Sun DW, Gao ZJ. The application of superheated steam impingement blanching (SSIB) in agricultural products processing – A review. J Food Eng 2014; 132:39-47. doi:https://doi.org/10.1016/j.jfoodeng.2014.01.03210.1016/j.jfoodeng.2014.01.032Search in Google Scholar

Zhu Y, Pan Z, McHugh TH, Barrett DM. Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating. J Food Eng 2010; 97(1):8-16. doi:https://doi.org/10.1016/j.jfoodeng.2009.07.02110.1016/j.jfoodeng.2009.07.021Search in Google Scholar

Wang H, Zhang Q, Mujumdar AS, Fang XM, Wang J, Pei YP et al. High-humidity hot air impingement blanching (HHAIB) efficiently inactivates enzymes, enhances extraction of phytochemicals and mitigates brown actions of chili pepper. Food Control 2020; 111:107050. doi:https://doi.org/10.1016/j.foodcont.2019.10705010.1016/j.foodcont.2019.107050Search in Google Scholar

Rawson A, Patras A, Tiwari BK, Noci F, Koutchma T, Brunton N. Effect of thermal and nonthermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Res Int 2011; 44(7):1875-1887. doi:https://doi.org/10.1016/j.foodres.2011.02.05310.1016/j.foodres.2011.02.053Search in Google Scholar

Klee HJ. Purple tomatoes: longer lasting, less disease, and better for you. Curr Biol 2013; 23(12): R520-R521. doi:https://doi.org/10.1016/j.cub.2013.05.01010.1016/j.cub.2013.05.01023787045Search in Google Scholar

Patras A, Brunton NP, O’Donnell C, Tiwari BK. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol 2010; 21(1):3-11. doi:https://doi.org/10.1016/j.tifs.2009.07.00410.1016/j.tifs.2009.07.004Search in Google Scholar

Van Boekel MA. Kinetic modeling of food quality: a critical review. Compr Rev Food Sci Food Saf 2008; 7(1):144-158. doi:https://doi.org/10.1111/j.1541-4337.2007.00036.x10.1111/j.1541-4337.2007.00036.xSearch in Google Scholar

Deylami MZ, Rahman RA, Tan CP, Bakar J, Olusegun L. Effect of blanching on enzyme activity, color changes, anthocyanin stability and extractability of mangosteen pericarp: A kinetic study. J Food Eng 2016; 178:12-19. doi: https://doi.org/10.1016/j.jfoodeng.2016.01.00110.1016/j.jfoodeng.2016.01.001Search in Google Scholar

Gonçalves EM, Pinheiro J, Abreu M, Brandão TR, Silva CL. Modelling the kinetics of peroxidase inactivation, colour and texture changes of pumpkin (Cucurbita maxima L.) during blanching. J Food Eng 2007; 81(4):693-701. doi:https://doi.org/10.1016/j.jfoodeng.2007.01.01110.1016/j.jfoodeng.2007.01.011Search in Google Scholar

Zheng H, Lu H. Effect of microwave pretreatment on the kinetics of ascorbic acid degradation and peroxidase inactivation in different parts of green asparagus (Asparagus officinalis L.) during water blanching. Food Chem 2011; 128(4):1087-1093. doi:https://doi.org/10.1016/j.foodchem.2011.03.13010.1016/j.foodchem.2011.03.130Search in Google Scholar

Ganjloo A, Rahman RA, Osman A, Bakar J, Bimakr M. Kinetics of crude peroxidase inactivation and color changes of thermally treated seedless guava (Psidium guajava L.). Food Bioproc Tech 2011; 4(8):1442-1449. doi:https://doi.org/10.1007/s11947-009-0245-410.1007/s11947-009-0245-4Search in Google Scholar

Neves FI, Vieira MC, Silva CL. Inactivation kinetics of peroxidase in zucchini (Cucurbita pepo L.) by heat and UV-C radiation. Innov Food Sci Emerg Technol 2012; 13:158-162. doi:https://doi.org/10.1016/j.ifset.2011.10.01310.1016/j.ifset.2011.10.013Search in Google Scholar

Fante L, Noreña CPZ. Enzyme inactivation kinetics and colour changes in garlic (Allium sativum L.) blanched under different conditions. J Food Eng 2012; 108(3):436-443. doi:https://doi.org/10.1016/j.jfoodeng.2011.08.02410.1016/j.jfoodeng.2011.08.024Search in Google Scholar

Liu F, Niu L, Li D, Liu C, Jin B. Kinetic characterization and thermal inactivation of peroxidase in aqueous extracts from sweet corn and waxy corn. Food Bioproc Tech 2013; 6(10):2800-2807. doi:https://doi.org/10.1007/s11947-012-0996-110.1007/s11947-012-0996-1Search in Google Scholar

Deylami MZ, Rahman RA, Tan CP, Bakar J, Olusegun I. Thermodynamics and kinetics of thermal inactivation of peroxidase from mango-steen (Garcinia mangostana L.) pericarp. J Eng Sci Technol 2014; 9:374-383.Search in Google Scholar

Gomes CF, Sarkis JR, Marczak LDF. Ohmic blanching of Tetsukabuto pumpkin: Effects on peroxidase inactivation kinetics and color changes. J Food Eng 2018; 233:74-80. doi:https://doi.org/10.1016/j.jfoodeng.2018.04.00110.1016/j.jfoodeng.2018.04.001Search in Google Scholar

Morales‐Blancas EF, Chandia VE, Cisneros‐Zevallos L. Thermal inactivation kinetics of peroxidase and lipoxygenase from broccoli, green asparagus and carrots. J Food Sci 2002; 67(1):146-154. doi:https://doi.org/10.1111/j.1365-2621.2002.tb11375.x10.1111/j.1365-2621.2002.tb11375.xSearch in Google Scholar

Verbeyst L, Oey I, Van der Plancken I, Hendrickx M, Van Loey A. Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chem 2010; 123(2):269-274. doi:https://doi.org/10.1016/j.foodchem.2010.04.02710.1016/j.foodchem.2010.04.027Search in Google Scholar

Verbeyst L, Van Crombruggen K, Van der Plancken I, Hendrickx M, Van Loey A. Anthocyanin degradation kinetics during thermal and high pressure treatments of raspberries. J Food Eng 2011; 105(3):513-521. doi: https://doi.org/10.1016/j.jfoodeng.2011.03.01510.1016/j.jfoodeng.2011.03.015Search in Google Scholar

Hou Z, Qin P, Zhang Y, Cui S, Ren G. Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Res Int 2013; 50(2):691-697. doi:https://doi.org/10.1016/j.foodres.2011.07.03710.1016/j.foodres.2011.07.037Search in Google Scholar

Li J, Song H, Dong N, Zhao G. Degradation kinetics of anthocyanins from purple sweet potato (Ipomoea batatas L.) as affected by ascorbic acid. Food Sci Biotechnol 2014; 23(1):89-96. doi:https://doi.org/10.1007/s10068-014-0012-910.1007/s10068-014-0012-9Search in Google Scholar

Garba U, Kaur S, Gurumayum S, Rasane, P. Effect of hot water blanching time and drying temperature on the thin layer drying kinetics of and anthocyanin degradation in black carrot (Daucus carota L.) shreds. Food Technol Biotechnol 2015; 53(3):324-330. doi:https://doi.org/10.17113/ftb. in Google Scholar

Sarkis JR, Jaeschke DP, Mercali GD, Tessaro IC, Marczak LDF. Degradation kinetics of anthocyanins in blackberry pulp during ohmic and conventional heating. Int Food Res J 2019; 26(1):87-97.Search in Google Scholar

Ha HTN, Thuy NM. Effect of thermal treatment on quality of black cherry tomatoes (Solanum lycopersicum cv. OG): optimization of the blanching parameters. Int J Agron Agri R. 2020; 16(4):1-10.Search in Google Scholar

Lee J, Durst RW, Wrolstad RE. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 2005; 88(5):1269-1278. doi: https://doi.org/10.1093/jaoac/88.5.126910.1093/jaoac/88.5.1269Search in Google Scholar

Anthon GE, Sekine Y, Watanabe N, Barrett DM. Thermal inactivation of pectin methylesterase, polygalacturonase, and peroxidase in tomato juice. J Agric Food Chem 2002; 50(21):6153-6159. doi:https://doi.org/10.1021/jf020462r10.1021/jf020462r12358495Search in Google Scholar

Ercan SŞ, Soysal Ç. Effect of ultrasound and temperature on tomato peroxidase. Ultrason Sonochem 2011; 18(2):689-695. doi:https://doi.org/10.1016/j.ultsonch.2010.09.01410.1016/j.ultsonch.2010.09.01420980184Search in Google Scholar

Martynenko A, Chen Y. Degradation kinetics of total anthocyanins and formation of polymeric color in blueberry hydrothermodynamic (HTD) processing. J Food Eng 2016; 171:44-51. doi:https://doi.org/10.1016/j.jfoodeng.2015.10.00810.1016/j.jfoodeng.2015.10.008Search in Google Scholar

Troiani EDP, Tropiani CT, Clemente E. Peroxidase (POD) and polyphenoloxidase (PPO) in grape (Vitis vinifera L.). Ciênc e Agrotecnologia 2003; 27(3):635-642.10.1590/S1413-70542003000300019Search in Google Scholar

Gonçalves EM, Pinheiro J, Abreu M, Brandão TRS, Silva CLM. Carrot (Daucus carota L.) peroxidase inactivation, phenolic content and physical changes kinetics due to blanching. J Food Eng 2010; 97(4):574-581. doi:https://doi.org/10.1016/j.jfoodeng.2009.12.00510.1016/j.jfoodeng.2009.12.005Search in Google Scholar

Zhao Y, Xie J. Practical applications of vacuum impregnation in fruit and vegetable processing. Trends Food Sci Technol 2004; 15(9):434-451. doi: https://doi.org/10.1016/j.tifs.2004.01.00810.1016/j.tifs.2004.01.008Search in Google Scholar

Martínez-Monzó J, Barat JM, González-Martínez C, Chiralt A, Fito P. Changes in thermal properties of apple due to vacuum impregnation. J Food Eng 2000; 43(4):213-218. doi: https://doi.org/10.1016/S0260-8774(99)00152-110.1016/S0260-8774(99)00152-1Search in Google Scholar

Ha HTN, Thuy NM. Optimization of vacuum infiltration before blanching of black cherry tomatoes (Solanum lycopersicum cv. OG) using response surface methodology. Food Res 2020; 4(4):1317-1325. doi: https://doi.org/10.26656/fr.2017.4(4).10010.26656/fr.2017.4(4).100Search in Google Scholar

Kechinski CP, Guimarães PVR, Noreña CPZ, Tessaro IC, Marczak LDF. Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. J Food Sci. 2010; 75(2): C173-C176. doi:https://doi.org/10.1111/j.1750-3841.2009.01479.x10.1111/j.1750-3841.2009.01479.x20492222Search in Google Scholar

Scalzo RL, Genna A, Branca F, Chedin M, Chassaigne H. Anthocyanin composition of cauliflower (Brassica oleracea L. var. botrytis) and cabbage (B. oleracea L. var. capitata) and its stability in relation to thermal treatments. Food Chem 2008; 107(1):136-144. doi:https://doi.org/10.1016/j.foodchem.2007.07.07210.1016/j.foodchem.2007.07.072Search in Google Scholar

Ibarhium AMA. Determination of anthocyanins content in crude and processed roselle (Hibiscus sabdriffa) calyces, and strawberries (Fragaria ananassa) fruit. Doctoral dissertation, University of Gezira. 2012.Search in Google Scholar

Busso Casati C, Baeza R, Sánchez V. Comparison of the kinetics of monomeric anthocyanins loss and colour changes in thermally treated black-currant, maqui berry and blueberry pulps from Argentina. J Berry Res 2017; 7(2):85-96.10.3233/JBR-170151Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo