HPLC-DAD phenolics screening and in vitro investigation of haemostatic, antidiabetic, antioxidant and photoprotective properties of Centaurea tougourensis Boiss. & Reut.
Traditional medicine has an important place in human history and this since antiquity. Indeed, during Egyptian and Chinese civilization era, many detailed manuscripts, describing the therapeutic effect of plants, were found which suggest that folk medicine is the basis of the actual medicine.
Objective
To investigate the phytochemical and pharmacological properties of the n-butanol (n-BuOH) and ethyl acetate (EA) extracts of the aerial part of Centaurea tougourensis.
Methods
The phytochemical evaluation was done based on HPLC-DAD approach. The antioxidant activity was determined by DPPH and cupric ion reducing antioxidant capacity (CUPRAC), while the hemostatic effect was performed using plasma recalcification time (PRT) method. The antidiabetic capacity was investigated by alpha-amylase inhibition assay and the photoprotective test was evaluated by the measurement of sun protection factor (SPF).
Results
13 phenolic compounds were identified in both extracts of C. tougourensis. These extracts showed antioxidant, haemostatic, antidiabetic and photoprotective properties with a dose-dependent manner. Amounts of n-BuOH activities were found higher, with a respective IC50 value of 0.72±0.07 μg/ml in DPPH assay, an A0.50 value lower than 3.125 μg/ml in CUPRAC assay besides a shortening rate percentage of coagulation (86.71%) in haemostatic assay, a moderate inhibition effect on alpha amylase activity with an IC50 value of (711.5±0.03 μg/ml) and a maximum sun protection factor of (56.035). These results were mostly found highly significant (p<0.001) when compared to respective standards.
Conclusion
This study demonstrated some pharmacological effects of C. tougourensis which suggests that our plant could be a good candidate to treat some illnesses related to oxidative stress, bleeding or skin cancer.
Bloom DE, Cadarette D. Infectious disease threats in the twenty-first century: strengthening the global response. Front Immunol 2019; 10:549. doi:https://dx.doi.org/10.3389/fimmu.2019.0054910.3389/fimmu.2019.00549644767630984169Search in Google Scholar
Ryu S, Kim BI, Lim JS, Tan CS, Chun BC. One health perspectives on emerging public health threats. J Prev Med Public Health 2017; 50(6):411-414. doi:https://dx.doi.org/10.3961/jpmph.17.09710.3961/jpmph.17.097571733329207450Search in Google Scholar
Goyal S, Gupta N, Chatterjee S, Nimesh S. Natural plant extracts as potential therapeutic agents for the treatment of cancer. Curr Top Med Chem 2017; 17(2):96-106. doi:https://dx.doi.org/10.2174/156802661666616053015440710.2174/156802661666616053015440727237328Search in Google Scholar
Atanasov AG, Zotchev SB, Dirsch VM. International Natural Product Sciences Taskforce, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 2021; 20(3):200-216. doi:https://dx.doi.org/10.1038/s41573-020-00114-z10.1038/s41573-020-00114-z784176533510482Search in Google Scholar
Korać RR, Khambholja KM. Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn Rev 2011; 5(10):164-173. doi:https://dx.doi.org/10.4103/0973-7847.9111410.4103/0973-7847.91114326305122279374Search in Google Scholar
Pal HC, Hunt KM, Diamond A, Elmets CA, Afaq F. Phytochemicals for the management of melanoma. Mini Rev Med Chem 2016; 16(12):953-79. doi: https://dx.doi.org/10.2174/138955751666616021112015710.2174/1389557516666160211120157498023826864554Search in Google Scholar
Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, D’Arcangelo D, et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed Res Int 2019; 2019: 8748253. doi:https://dx.doi.org/10.1155/2019/874825310.1155/2019/8748253647555431080832Search in Google Scholar
Rangel-Huerta OD, Pastor-Villaescusa B, Aguilera CM, Gil A. A systematic review of the efficacy of bioactive compounds in cardiovascular disease: phenolic compounds. Nutrients 2015; 7(7):5177-5216. doi:https://dx.doi.org/10.3390/nu707517710.3390/nu7075177451699326132993Search in Google Scholar
Sharifi-Rad M, Lankatillake C, Dias DA, Docea AO, Mahomoodally MF, Lobine D, et al. Impact of natural compounds on neurodegenerative disorders: from preclinical to pharmacotherapeutics. J Clin Med 2020; 9(4):1061. doi:https://dx.doi.org/10.3390/jcm904106110.3390/jcm9041061723106232276438Search in Google Scholar
Saha S, Verma R. Inhibitory potential of traditional herbs on α-amylase activity. Pharm Biol 2012; 50(3):326-331. doi: https://dx.doi.org/10.3109/13880209.2011.60807510.3109/13880209.2011.60807522136147Search in Google Scholar
Bashary R, Vyas M, Nayak SK, et al. An insight of alpha-amylase inhibitors as a valuable tool in the management of type 2 diabetes mellitus. Curr Diabetes Rev 2020; 16(2):117-136. doi:https://dx.doi.org/10.2174/157339981566619061809331510.2174/157339981566619061809331531237215Search in Google Scholar
Cordier W, Steenkamp V. Herbal remedies affecting coagulation: a review. Pharm Biol 2012; 50(4):443-52. doi:https://dx.doi.org/10.3109/13880209.2011.61114510.3109/13880209.2011.61114522136282Search in Google Scholar
Simmons JW, Pittet JF, Pierce B. Trauma-induced coagulopathy. Curr Anesthesiol Rep 2014; 4(3):189-199. doi:https://dx.doi.org/10.1007/s40140-014-0063-810.1007/s40140-014-0063-8428884825587242Search in Google Scholar
Marietta M, Facchini L, Pedrazzi P, Busani S, Torelli G. Pathophysiology of bleeding in surgery. Transplant Proc 2006; 38(3):812-814. doi:https://dx.doi.org/10.1016/j.transproceed.2006.01.04710.1016/j.transproceed.2006.01.04716647479Search in Google Scholar
Hilpold A, Garcia-Jacas N, Vilatersana R, Serna A. Taxonomical and nomenclatural notes on Centaurea: A proposal of classification, a description of new sections and subsections, and a species list of the redefined section Centaurea. Collect Bot 2014; 33: e001. doi:http://dx.doi.org/10.3989/collectbot.2013.v33.00110.3989/collectbot.2013.v33.001Search in Google Scholar
Quezel P, Santa S. Nouvelle flore de l’Algérie et des régions désertiques méridionales. 2nd ed. Paris. CNRS, 1963:1023-1024.Search in Google Scholar
Çelikezen FÇ, Hayta Ş, Özdemir Ö, Türkez H. Cytotoxic and antioxidant properties of essential oil of Centaurea behen L. in vitro. Cytotechnology 2019; 71(1):345-350. doi:https://dx.doi.org/10.1007/s10616-018-0290-910.1007/s10616-018-0290-9636850130603915Search in Google Scholar
Grienke U, Radić Brkanac S, Vujčić V, Urban E, Ivanković S, Stojković R, et al. Biological activity of flavonoids and rare sesquiterpene lactones isolated from Centaurea ragusina L. Front Pharmacol 2018; 9:972. doi:https://dx.doi.org/10.3389/fphar.2018.0097210.3389/fphar.2018.00972611714930190676Search in Google Scholar
Sokovic M, Ciric A, Glamoclija J, Skaltsa H. Biological activities of sesquiterpene lactones isolated from the genus Centaurea L. (Asteraceae). Curr Pharm Des 2017; 23(19):2767-2786. doi:https://dx.doi.org/10.2174/138161282366617021511392710.2174/138161282366617021511392728215152Search in Google Scholar
Bensaad MS, Dassamiour S, Hambaba L, C Bensouici, Haba H. In vitro assessment of anti-oxidant, anti-inflammatory, neuroprotective and antimicrobial activities of Centaurea tougourensis Boiss & Reut. J Pharm Pharmacogn Res 2021; 9(6):790-802.Search in Google Scholar
Falah S, Suzuki T, Katayama T. Chemical constituents from Swietenia macrophylla bark and their antioxidant activity. Pak J Biol Sci 2008; 11(16): 2007-2012. doi:https://dx.doi.org/10.3923/pjbs.2008.2007.201210.3923/pjbs.2008.2007.201219266907Search in Google Scholar
Blois MS. Antioxidant determinations by the use of a stable Free Radical Nature 1958; 4617 (181):1119-1200.10.1038/1811199a0Search in Google Scholar
Apak R, Güçlü K, Ozyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 2004; 52(26):7970-7981. doi:https://dx.doi.org/10.1021/jf048741x10.1021/jf048741x15612784Search in Google Scholar
Pandith H, Thongpraditchote S, Wongkrajang Y, Gritsanapan W. In vivo and in vitro hemostatic activity of Chromolaena odorata leaf extract. Pharm Biol 2012; 50(9):1073-1077. doi: https://dx.doi.org/10.3109/13880209.2012.65684910.3109/13880209.2012.65684922881138Search in Google Scholar
Agada R, Usman WA, Shehu S, Thagariki D. In vitro and in vivo inhibitory effects of Carica papaya seed on α-amylase and α-glucosidase enzymes. Heliyon 2020; 6(3):e03618. doi:https://dx.doi.org/10.1016/j.heliyon.2020.e0361810.1016/j.heliyon.2020.e03618710941932258473Search in Google Scholar
Mansur JDS, Breder MNR, Mansur MCDA. Determinação Do Fator De Proteção Solar Por Espectrofotometria. An Bras Dermatol 1986; 61:121-124.Search in Google Scholar
Sayre RM, Agin PP, LeVee GJ, Marlowe E. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem Photo-biol 1979; 29(3):559-566. doi:https://dx.doi.org/10.1111/j.1751-1097.1979.tb07090.x10.1111/j.1751-1097.1979.tb07090.x441130Search in Google Scholar
Liu Q, Pan R, Ding L, Zhang F, Hu L, Ding B, et al. Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries. Int Immunopharmacol 2017; 49:132-141. doi:https://dx.doi.org/10.1016/j.intimp.2017.05.02610.1016/j.intimp.2017.05.02628577437Search in Google Scholar
Magalingam KB, Radhakrishnan A, Haleagrahara N. Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Int J Mol Med 2013; 32(1):235-240. doi:https://dx.doi.org/10.3892/ijmm.2013.137510.3892/ijmm.2013.137523670213Search in Google Scholar
Igarashi K, Ohmuma M. Effects of isorhamnetin, rhamnetin, and quercetin on the concentrations of cholesterol and lipoperoxide in the serum and liver and on the blood and liver antioxidative enzyme activities of rats. Biosci Biotechnol Biochem 1995; 59(4):595-601. doi:https://dx.doi.org/10.1271/bbb.59.59510.1271/bbb.59.5957772823Search in Google Scholar
Al-Rejaie SS, Aleisa AM, Sayed-Ahmed MM, Al-Shabanah OA, Abuohashish HM, Ahmed MM, et al. Protective effect of rutin on the antioxidant genes expression in hypercholestrolemic male Westar rat. BMC Complement Altern Med 2013; 13:136. doi:https://dx.doi.org/10.1186/1472-6882-13-13610.1186/1472-6882-13-136371709423773725Search in Google Scholar
Sarker U, Oba S. Phenolic profiles and antioxidant activities in selected drought-tolerant leafy vegetable amaranth. Sci Rep 2020; 10:18287.https://dx.doi.org/10.1038/s41598-020-71727-y10.1038/s41598-020-71727-y758948033106544Search in Google Scholar
Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep 2019; 24:e00370. doi:https://dx.doi.org/10.1016/j.btre.2019.e0037010.1016/j.btre.2019.e00370673413531516850Search in Google Scholar
Berube BJ, Bubeck Wardenburg J. Staphylococcus aureusα-toxin: nearly a century of intrigue. Toxins 2013; 5(6):1140-1166. doi:https://dx.doi.org/10.3390/toxins506114010.3390/toxins5061140371777423888516Search in Google Scholar
Aktumsek A, Zengin G, Guler GO, Cakmak YS, Duran A. Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem Toxicol 2013; 55:290-296. doi:https://dx.doi.org/10.1016/j.fct.2013.01.01810.1016/j.fct.2013.01.01823357566Search in Google Scholar
Ugur A, Duru ME, Ceylan O, Sarac N, Varol O, Kivrak I. Chemical composition, antimicrobial and antioxidant activities of Centaurea ensiformis Hub.-Mor. (Asteraceae), a species endemic to Mugla (Turkey). Nat Prod Res 2009; 23(2):149-167. doi:https://dx.doi.org/10.1080/1478641080191577010.1080/1478641080191577019173123Search in Google Scholar
Conforti F, Menichini F, Loizzo MR, Statti AG, Rapisarda A, Menichini F, et al. Anti-oxidant, alpha-amylase inhibitory and brine-shrimp toxicity studies on Centaurea centaurium L. methanolic root extract. Nat Prod Res 2008; 22(16):1457-1466. doi:https://dx.doi.org/10.1080/1478641080209807110.1080/1478641080209807119023809Search in Google Scholar
Mattera R, Benvenuto M, Giganti MG, Tresoldi I, Pluchinotta FR, Bergante S, et al. Effects of polyphenols on oxidative stress-mediated injury in cardiomyocytes. Nutrients 2017; 9(5):523. doi:https://dx.doi.org/10.3390/nu905052310.3390/nu9050523545225328531112Search in Google Scholar
Charles AL, Meyer A, Dal-Ros S, Auger C, Keller N, Ramamoorthy TG, et al. Polyphenols prevent ageing-related impairment in skeletal muscle mitochondrial function through decreased reactive oxygen species production. Exp Physiol 2013; 98(2):536-545. doi:https://dx.doi.org/10.1113/expphysiol.2012.06749610.1113/expphysiol.2012.06749622903980Search in Google Scholar
Kose R, Sogut O, Demir T, Koruk I. Hemostatic efficacy of folkloric medicinal plant extract in a rat skin bleeding model. Dermatol Surg 2012; 38(5):760-766. doi:https://dx.doi.org/10.1111/j.1524-4725.2011.02288.x10.1111/j.1524-4725.2011.02288.x22268820Search in Google Scholar
Ed Nignpense B, Chinkwo KA, Blanchard CL, Santhakumar AB. Polyphenols: modulators of platelet function and platelet microparticle generation? Int J Mol Sci 2019; 21(1):146. doi:https://dx.doi.org/10.3390/ijms2101014610.3390/ijms21010146698183931878290Search in Google Scholar
de Jesus NZ, de Souza Falcão H, Gomes IF, de Almeida Leite TJ, de Morais Lima GR, Barbosa-Filho JM, et al. Tannins, peptic ulcers and related mechanisms. Int J Mol Sci 2012; 13(3):3203-3228. doi:https://dx.doi.org/10.3390/ijms1303320310.3390/ijms13033203331771022489149Search in Google Scholar
Carnevale R, Loffredo L, Nocella C, Bartimoccia S, Bucci T, De Falco E, et al. Epicatechin and catechin modulate endothelial activation induced by platelets of patients with peripheral artery disease. Oxid Med Cell Longev 2014; 2014:691015. doi:https://dx.doi.org/10.1155/2014/69101510.1155/2014/691015414230125180068Search in Google Scholar
Fauci AS. Harrison’s principles of internal medicine. Medical Publishing Division. 20th ed. McGraw-Hill 2018:3691-3697.Search in Google Scholar
Zhou X, Xin Q, Wang Y, Zhao Y, Chai H, Huang X et al. Total flavonoids of astragalus plays a cardioprotective role in viral myocarditis. Acta Cardiol Sin 2016; 32(1):81-88. doi:https://dx.doi.org/10.6515/acs20150424hSearch in Google Scholar
Newton AC, Bootman MD, Scott JD. Second messengers. Cold Spring Harb Perspect Biol 2016; 8(8): a005926. doi:https://dx.doi.org/10.1101/cshperspect.a00592610.1101/cshperspect.a005926Search in Google Scholar
Brass LF. Joseph S. A role for inositol triphosphate in intracellular Ca2+ mobilization and granule secretion in platelets. J Biol Chem 1985; 260:15172-15179.10.1016/S0021-9258(18)95718-2Search in Google Scholar
Li C, Hu M, Jiang S, Liang Z, Wang J, Liu Z, et al. Evaluation procoagulant activity and mechanism of astragalin. Molecules 2020; 25(1):177. doi:https://dx.doi.org/10.3390/molecules2501017710.3390/molecules25010177698301831906332Search in Google Scholar
Yin Z, Zhang Y, Zhang J, Wang J, Kang W. Coagulatory active constituents of Malus pumila Mill. flowers. Chem Cent J 2018; 12(1):126. doi:https://dx.doi.org/10.1186/s13065-018-0490-610.1186/s13065-018-0490-6676803030506434Search in Google Scholar
Cordier W, Steenkamp V. Herbal remedies affecting coagulation: a review. Pharm Biol 2012; 50(4):443-452. doi: https://dx.doi.org/10.3109/13880209.2011.61114510.3109/13880209.2011.61114522136282Search in Google Scholar
Rimac H, Dufour C, Debeljak Ž, Zorc B, Bojić M. Warfarin and flavonoids do not share the same binding region in binding to the IIa subdomain of human serum albumin. Molecules 2017; 22(7):1153. doi:https://dx.doi.org/10.3390/molecules2207115310.3390/molecules22071153615231828696372Search in Google Scholar
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21(17):6275. doi:https://dx.doi.org/10.3390/ijms2117627510.3390/ijms21176275750372732872570Search in Google Scholar
Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 2016; 21(6):708. doi:https://dx.doi.org/10.3390/molecules2106070810.3390/molecules21060708627411227248987Search in Google Scholar
Laddha AP, Kulkarni YA. Tannins and vascular complications of diabetes: An update. Phytomedicine 2019; 56:229-245. doi:https://dx.doi.org/10.1016/j.phymed.2018.10.02610.1016/j.phymed.2018.10.02630668344Search in Google Scholar
Li H, Yao Y, Li L. Coumarins as potential antidiabetic agents. J Pharm Pharmacol 2017; 69(10):1253-1264. doi:https://dx.doi.org/10.1111/jphp.1277410.1111/jphp.1277428675434Search in Google Scholar
Zhao DG, Zhou AY, Du Z, Zhang Y, Zhang K, Ma YY. Coumarins with α-glucosidase and α-amylase inhibitory activities from the flower of Edgeworthia gardneri. Fitoterapia 2015; 107:122-127. doi:https://dx.doi.org/10.1016/j.fitote.2015.10.01210.1016/j.fitote.2015.10.012Search in Google Scholar
Martínez JL, Meza E, Petranovic D, Nielsen J. The impact of respiration and oxidative stress response on recombinant α-amylase production by Saccharomyces cerevisiae. Metab Eng Commun 2016; 3:205-210. doi:https://dx.doi.org/10.1016/j.meteno.2016.06.00310.1016/j.meteno.2016.06.003Search in Google Scholar
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress – A concise review. Saudi Pharm J 2016; 24(5):547-553. doi:https://dx.doi.org/10.1016/j.jsps.2015.03.01310.1016/j.jsps.2015.03.013Search in Google Scholar
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015; 6(3):456-480. doi:https://dx.doi.org/10.4239/wjd.v6.i3.45610.4239/wjd.v6.i3.456Search in Google Scholar
Navale AM, Paranjape AN. Glucose transporters: physiological and pathological roles. Biophys Rev 2016; 8(1):5-9. doi:https://dx.doi.org/10.1007/s12551-015-0186-210.1007/s12551-015-0186-2Search in Google Scholar
Bandyopadhyay G, Standaert ML, Sajan MP, Karnitz LM, Cong L, Quon MJ, et al. Dependence of insulin-stimulated glucose transporter 4 translocation on 3-phosphoinositide-dependent protein kinase-1 and its target threonine-410 in the activation loop of protein kinase C-zeta. Mol Endocrinol 1999; 13(10):1766-1772. doi:https://dx.doi.org/10.1210/mend.13.10.036410.1210/mend.13.10.0364Search in Google Scholar
Zengin G, Locatelli M, Carradori S, Mocan AM, Aktumsek A. Total phenolics, flavonoids, condensed tannins content of eight Centaurea species and their broad inhibitory activities against cholinesterase, tyrosinase, α-amylase and α-glucosidase. Not Bot Hort Agrobot Cluj 2016; 44(1):195. doi:https://dx.doi.org/10.15835/nbha4411025910.15835/nbha44110259Search in Google Scholar
Lu G, Luo X, Liu Z, Yang L, Lin C, Xu M. Protective effect of vanillin in streptozotocin-induced diabetes in neonatal rats via attenuation of oxidative stress and inflammation. Trop J Pharm Res 2019; 18(2):349-355. doi:https://dx.doi.org/10.4314/TJPR.V18I2.1810.4314/tjpr.v18i2.18Search in Google Scholar
Iannuzzi C, Borriello M, Irace G, Cammarota M, Di Maro A, Sirangelo I. Vanillin affects amyloid aggregation and non-enzymatic glycation in human insulin. Sci Rep 2017; 7(1):15086. doi:https://dx.doi.org/10.1038/s41598-017-15503-510.1038/s41598-017-15503-5Search in Google Scholar
Peungvicha P, Temsiririrkkul R, Prasain JK, Tezuka Y, Kadota S, Thirawarapan SS, Watanabe H. 4-Hydroxybenzoic acid: a hypoglycemic constituent of aqueous extract of Pandanus odorus root. J Ethnopharmacol 1998; 62(1):79-84. doi: https://dx.doi.org/10.1016/s0378-8741(98)00061-010.1016/S0378-8741(98)00061-0Search in Google Scholar
Mead MN. Benefits of sunlight: a bright spot for human health. Environ Health Perspect 2008; 116(4):A160-167. doi:https://dx.doi.org/10.1289/ehp.116-a16010.1289/ehp.116-a160229099718414615Search in Google Scholar
D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci 2013; 14(6):12222-12248. doi:https://dx.doi.org/10.3390/ijms14061222210.3390/ijms140612222370978323749111Search in Google Scholar
He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomed Pharmacother 2021; 134:111161. doi:https://dx.doi.org/10.1016/j.biopha.2020.11116110.1016/j.biopha.2020.11116133360043Search in Google Scholar
Twilley D, Moodley D, Rolfes H, Moodley I, McGaw LJ, Madikizela B, et al. Ethanolic extracts of South African plants, Buddleja saligna Willd. and Helichrysum odoratissimum (L.) Sweet, as multi-functional ingredients in sunscreen formulations. S Afr J Bot 2021; 137:171-182. doi:https://dx.doi.org/10.1016/j.sajb.2020.10.01010.1016/j.sajb.2020.10.010Search in Google Scholar
Yavaş İ, Ünay A, Ali S, Abbas Z. UV-B radiations and secondary metabolites. Turk J Food Agric Sci Technol 2020; 8(1):147-157. doi:https://dx.doi.org/10.24925/turjaf.v8i1.147-157.287810.24925/turjaf.v8i1.147-157.2878Search in Google Scholar
Cefali LC, Ataide JA, Fernandes AR, Sousa I, Gonçalves F, Eberlin S, et al. Flavonoid-enriched plant-extract-loaded emulsion: a novel phytocosmetic sunscreen formulation with antioxidant properties. Antioxidants 2019; 8(10):443.https://dx.doi.org/10.3390/antiox810044310.3390/antiox8100443682645731581509Search in Google Scholar
Petruk G, Del Giudice R, Rigano MM, Monti DM. Antioxidants from plants protect against skin photoaging. Oxid Med Cell Longev 2018; 2018:1454936. doi:https://dx.doi.org/10.1155/2018/145493610.1155/2018/1454936609890630174780Search in Google Scholar
Kostyuk V, Potapovich A, Albuhaydar AR, Mayer W, De Luca C, Korkina L. Natural substances for prevention of skin photoaging: screening systems in the development of sunscreen and rejuvenation cosmetics. Rejuvenation Res 2018; 21(2):91-101. doi:https://dx.doi.org/10.1089/rej.2017.193110.1089/rej.2017.1931591004228661208Search in Google Scholar
Saewan N, Jimtaisong A. Natural products as photoprotection. J Cosmet Dermatol 2015; 14(1):47-63. doi:https://dx.doi.org/10.1111/jocd.1212310.1111/jocd.1212325582033Search in Google Scholar
Daré RG, Nakamura CV, Ximenes VF, Lautenschlager, SOS. Tannic acid, a promising anti-photoaging agent: evidences of its antioxidant and anti-wrinkle potentials, and its ability to prevent photodamage and MMP-1 expression in L929 fibroblasts exposed to UVB. Free Radic Biol Med 2020; 160:342-355 doi:https://dx.doi.org/10.1016/j.freeradbiomed.2020.08.01910.1016/j.freeradbiomed.2020.08.01932858160Search in Google Scholar
Neradil J, Veselská R, Slanina J. UVC-protective effect of caffeic acid on normal and transformed human skin cells in vitro. Folia Biol 2003; 49(5):197-202.Search in Google Scholar
Choquenet B, Couteau C, Paparis E, Coiffard LJ. Quercetin and rutin as potential sunscreen agents: determination of efficacy by an in vitro method. J Nat Prod 2008; 71(6):1117-1118. doi:https://dx.doi.org/10.1021/np700729710.1021/np700729718512988Search in Google Scholar
Heurung AR, Raju SI, Warshaw EM. Adverse reactions to sunscreen agents: epidemiology, responsible irritants and allergens, clinical characteristics, and management. Dermatitis 2014; 25(6):289-326. doi:https://dx.doi.org/10.1097/DER.000000000000007910.1097/DER.000000000000007925384223Search in Google Scholar
Peres DD, Sarruf FD, de Oliveira CA, Velasco MVR, Baby AR. Ferulic acid photoprotective properties in association with UV filters: multifunctional sunscreen with improved SPF and UVA-PF. J Photochem Photobiol B 2018; 185:46-49. doi:https://dx.doi.org/10.1016/j.jphotobiol.2018.05.02610.1016/j.jphotobiol.2018.05.02629864725Search in Google Scholar
Keyes E, Werth VP, Brod B. Potential allergenicity of commonly sold high SPF broad spectrum sun-screens in the United States; from the perspective of patients with autoimmune skin disease. Int J Womens Dermatol 2019; 5(4):227-232. doi:https://dx.doi.org/10.1016/j.ijwd.2019.05.00610.1016/j.ijwd.2019.05.006683175431700977Search in Google Scholar
Commission of the European Communities. Recommendation of 22 September 2006 on sun protection products and manufacturers’ claims 2006; 265: 39-43.Search in Google Scholar
Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photo-chem Photobiol 2008; 84(3):539-549. doi:https://dx.doi.org/10.1111/j.1751-1097.2007.00226.x10.1111/j.1751-1097.2007.00226.x267103218435612Search in Google Scholar
Liu-Smith F, Meyskens FL. Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma. Mol Nutr Food Res 2016; 60(6):1264-1274. doi:https://dx.doi.org/10.1002/mnfr.20150082210.1002/mnfr.201500822490091226865001Search in Google Scholar
Netcharoensirisuk P, Abrahamian C, Tang R, Chen CC, Rosato AS, Beyers W, et al. Flavonoids increase melanin production and reduce proliferation, migration and invasion of melanoma cells by blocking endolysosomal/melanosomal TPC2. Sci Rep 2021; 11(1):8515. doi:https://dx.doi.org/10.1038/s41598-021-88196-610.1038/s41598-021-88196-6805569033875769Search in Google Scholar