1. bookVolume 67 (2021): Issue 4 (December 2021)
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Cytotoxic roles of apigenin and kaempferol on staurosporine-treated mesenchymal stem cells in an in vitro culture

Published Online: 02 Feb 2022
Volume & Issue: Volume 67 (2021) - Issue 4 (December 2021)
Page range: 10 - 15
Received: 13 Sep 2021
Accepted: 19 Oct 2021
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
Summary Introduction

Flavonoids are widely distributed in the wild. They constitute a large group of compounds that have a beneficial effect on the human body. Apigenin and kaempferol, which belong to the flavone subgroup, have, inter alia, an antitumor effect. The influence of these compounds on the survival of stem cells in a toxic environment has not yet been studied.

Objective

The aim of the study was to evaluate the effect of selected concentrations of apigenin and kaempferol on the survival of mesenchymal stem cells (MSC) in the presence of a cell-death inducer – staurosporine.

Methods

Mesenchymal stem cells that were obtained from the Wharton’s jelly of umbilical cords were used for the research. In the first stage, the MSC were treated with apigenin at concentrations of 1.2, 12.5, 25, 50 and 100 µM/ml and kaempferol at concentrations of 1.2, 12.5, 25, 50 and 100 µM/ml. In the next stage, the effect of increased concentrations of 0.1, 0.5 and 1 µM/ml of staurosporine on MSC was examined. The key stage of the experiment was investigating the interaction between the selected concentrations of apigenin (12.5 and 50 µM/ml) and kaempferol (12.5 and µM/ml) on MSC in the presence of staurosporine at a concentration of 1 µM/ml, which had the highest toxicity.

Results

Both apigenin and kaempferol significantly increased the cytotoxic features of staurosporine on the MSC culture.

Keywords

Shashank K, Abhay P. Chemistry and biological activities of flavonoids: an overview. Sci World J 2013; 162750. doi:https://dx.doi.org/110.1155/2013/162750Search in Google Scholar

Haghi G, Hatami A, Safaei A, Mehran M. Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV. Res Pharm Sci 2014; 9(1):31-37.Search in Google Scholar

Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 2017; 7(1). doi:https://dx.doi.org/110.1186/s13578-017-0179-x10.1186/s13578-017-0179-x562976629034071Search in Google Scholar

Lee J-H, Zhou H J, Cho S Y, Kim Y S, Lee Y S, Jeong Ch S. Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells and expression of cellular adhesion molecules. Arch Pharm Res 2007; 30(10): 1318-1327. doi:http://dx.doi.org/10.1007/BF0298027310.1007/BF0298027318038911Search in Google Scholar

Kadioglu O, Nass J, Saeed M E M, Schuler B, Efferth T. Kaempferol is an anti-inflammatory compound with activity towards NF-κB pathway proteins. Anticancer Res 2015; 35(5):2645-50.Search in Google Scholar

Fahad AR, Falaq N, Smita J, Yasir HS. Health functionality of apigenin: a review. Int J Food Prop 2017; 20:1197-1238. doi:https://dx.doi.org/110.1080/10942912.2016.120718810.1080/10942912.2016.1207188Search in Google Scholar

Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A et al. The therapeutic potential of apigenin. Int J Mol Sci 2019; 20(6):1305. doi:http://dx.doi.org/10.3390/ijms2006130510.3390/ijms20061305647214830875872Search in Google Scholar

DuPont MS, Day AJ, Bennett RN, Mellon FA, Kroon PA. Absorption of kaempferol from en-dive, a source of kaempferol-3-glucuronide, in humans. Eur J Clin Nutr 2004; 58(6):947-954. doi:http://dx.doi.org/10.1038/sj.ejcn.160191610.1038/sj.ejcn.160191615164116Search in Google Scholar

Dabeek WM, Marra MV. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 2019; 11(10):2288. doi:http://dx.doi.org/10.3390/nu1110228810.3390/nu11102288683534731557798Search in Google Scholar

Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU. Chemo‐preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review. Phytother Res 2018; 1(13):1-13. doi:http://dx.doi.org/10.1002/ptr.622710.1002/ptr.622730402931Search in Google Scholar

Ulanowska M, Olas B. Fitozwiązki – ważne składniki suplementów diety oraz ich wpływ na zdrowie człowieka. Kosmos. 2021; 70(1):103-114. doi:https://dx.doi.org/110.36921/kos.2021_272110.36921/kos.2021_2721Search in Google Scholar

Malsy M, Bitzinger D, Graf B, Bundscherer A. Staurosporine induces apoptosis in pancreatic carcinoma cells PaTu 8988t and Panc-1 via the intrinsic signaling pathway. Eur J Med Res 2019; 24: 5. doi:http://dx.doi.org/10.1186/s40001-019-0365-x10.1186/s40001-019-0365-x634860430686270Search in Google Scholar

McCarthy MJ, Rubin LL, Philpott KJ. Involvement of caspases in sympathetic neuron apoptosis. J Cell Sci 1997; 110(Pt 18):2165-73.10.1242/jcs.110.18.21659378766Search in Google Scholar

Koh JY, Wie MB, Gwag BJ, Sensi SL, Canzoniero LM, Demaro J et al. Staurosporine-induced neuronal apoptosis. Exp Neurol 1995; 135(2):153-9. doi:http://dx.doi.org/10.1006/exnr.1995.107410.1006/exnr.1995.10747589326Search in Google Scholar

Linares GR, Leng Y, Maric D, Chuang D-M. Over-expression of fibroblast growth factor-21 (FGF-21) protects mesenchymal stem cells against caspase-dependent apoptosis induced by oxidative stress and inflammation. Cell Biol Int 2020; 44:2163-2169. doi:http://dx.doi.org/10.1002/cbin.1140910.1002/cbin.1140932557962Search in Google Scholar

Borkowska P, Zielinska A, Paul-Samojedny M, Stojko R, Kowalski J. Evaluation of reference genes for quantitative real-time PCR in Wharton’s Jelly-derived mesenchymal stem cells after lentiviral transduction and differentiation. Mol Biol Rep 2020; 47(2):1107-1115. doi:http://dx.doi.org/10.1007/s11033-019-05207-610.1007/s11033-019-05207-631781918Search in Google Scholar

Gao H-L, Yu X-J, Hu H-B, Yang Q-W, Liu K-L, Chen Y-M et al. Apigenin improves hypertension and cardiac hypertrophy through modulating NADPH oxidase-dependent ROS generation and cytokines in the hypothalamic paraventricular nucleus. Cardiovascular Toxicology 2021; 21:721-736. doi:http://dx.doi.org/10.1007/s12012-021-09662-110.1007/s12012-021-09662-134076830Search in Google Scholar

Ciumărnean L, Milaciu M V, Runcan O, Vesa S C, Răchis A L, Negrean V et al. The effects of flavonoids in cardiovascular diseases. Molecules 2020; 25, 4320. doi:http://dx.doi.org/10.3390/molecules2518432010.3390/molecules25184320757102332967119Search in Google Scholar

Dourado N S, Souza C S, Almeida M M A, Silva A B, Santos B L, Silva V D A et al. Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer’s disease. Front Aging Neurosci 2020; 12:119. doi:https://dx.doi.org/110.3389/fnagi.2020.0011910.3389/fnagi.2020.00119724384032499693Search in Google Scholar

Zhao L, Wang J-L, Liu R, Li X-X, Li J-F, Zhang L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 2013; 18: 9949-9965. doi:https://dx.doi.org/110.3390/molecules1808994910.3390/molecules18089949627049723966081Search in Google Scholar

Paria H, Javad F B, Somaye V, Farnaz N Evaluation of the neuroprotective, anticonvulsant and cognition improvement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway. Iranian Journal of Basic Medical Sciences 2019; 22(7): 752-758. doi:http://dx.doi.org/10.22038/ijbms.2019.33892.8064Search in Google Scholar

Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer J P E. The neuroprotective potential of flavonoids: a multiplicity of effects. 2008; 3(3-4): 115–126. doi:http://dx.doi.org/10.1007/s12263-008-0091-410.1007/s12263-008-0091-4259300618937002Search in Google Scholar

de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem 2021; 15;338:127535. doi:http://dx.doi.org/10.1016/j.foodchem.2020.12753510.1016/j.foodchem.2020.12753532798817Search in Google Scholar

Ahn-Jarvis J H, Parihar A, Doseff A I. Dietary flavonoids for immunoregulation and cancer: food design for targeting disease. Antioxidants 2019; 8(7): 202. doi:http://dx.doi.org/10.3390/antiox807020210.3390/antiox8070202668072931261915Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo