1. bookVolume 67 (2021): Issue 3 (September 2021)
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Cytoprotective roles of epigallocatechin gallate and resveratrol on staurosporine-treated mesenchymal stem cells in in vitro culture

Published Online: 15 Nov 2021
Volume & Issue: Volume 67 (2021) - Issue 3 (September 2021)
Page range: 45 - 52
Received: 21 Mar 2021
Accepted: 10 Sep 2021
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
Summary

Introduction: There are many scientific reports on the beneficial effects of epigallocatechin gallate and resveratrol on the human body, e.g. antioxidant properties, a protective effect on the circulatory system and reduction of inflammation.

Objective: The aim of the study was to evaluate the effect of these substances on the survival of mesenchymal stem cells (MSC) in the presence of the pro-apoptotic factor staurosporine.

Methods: Cell viability WST-1 colorimetric assay.

Results: It was confirmed that both 25 µM/ml and 50 µM/ml of epigallocatechin and 50 µM/ml of resveratrol statistically significantly increased the MSC survival rate.

Conclusion: An excess supply of epigallocatechin gallate (50 µM/ml and higher) has a cytotoxic effect on MSC, which may have a negative impact on the body’s auto-regenerative capacity. Under toxic and stressful conditions, resveratrol and epigallocatechin gallate perform cytoprotective functions, thereby reducing the negative impact of toxic environmental conditions on the mesenchymal stem cells.

Keywords

1. Wierzejska R. Wpływ picia herbaty na zdrowie – aktualny stan wiedzy. Prz Epidemiol 2014; 68(3):595-599. Search in Google Scholar

2. Bienia B, Uram-Dudek A, Dykiel M, Krochmal--Marczak B, Sawicka B. Właściwości przeciwutleniające wybranych herbat zielonych. Herbalism 2019; 1(5):32-40. Search in Google Scholar

3. Lamer-Zarawska E. Fitoterapia i leki roślinne. Warszawa. PZWL 2012:138. Search in Google Scholar

4. Cierniak A, Skubal M, Kalemba-Drożdż M. Czy galusan epigallokatechiny może być skutecznym polifenolem w terapii skojarzonej z etopozydem w leczeniu przewlekłej białaczki szpikowej? Państ Społ 2018; 18(3):9-28. doi: http://dx.doi.org/10.31749/pismzp2018/2083610.31749/pismzp2018/20836 Search in Google Scholar

5. Kania M, Baraniak J. Wybrane właściwości biologiczne i farmakologiczne zielonej herbaty (Camellia sinensis (L.) O. Kuntze. Post Fitoter 2011; 1:34-40. Search in Google Scholar

6. Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 2008; 138(9):1677-1683. doi: http://dx.doi.org/10.1093/jn/138.9.167710.1093/jn/138.9.1677258689318716169 Search in Google Scholar

7. Wolfram S. Effects of green tea and EGCG on cardiovascular and metabolic health. J Am Coll Nutr 2007; 26(4):373-388. doi: http://dx.doi.org/10.1080/07315724.2007.1071962610.1080/07315724.2007.1071962617906191 Search in Google Scholar

8. Han M-K. Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic beta-cell damage. Exp Mol Med 2003; 35(2):136-139. doi: http://dx.doi.org/10.1038/emm.2003.1910.1038/emm.2003.1912754418 Search in Google Scholar

9. Lorenz M, Wassler S, Follmann E, Michaelis W, Dusterhoft T, Baumann G, Stangl V. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J Biol Chem 2004; 279(7):6190-6195. doi: http://dx.doi.org/10.1074/jbc.M30911420010.1074/jbc.M30911420014645258 Search in Google Scholar

10. Stangl V, Lorenz M, Stangl K. The role of tea and tea flavonoids in cardiovascular health. Mol Nutr Food Res 2006; 50(2):218-228. doi: https://dx.doi.org/10.1002/mnfr.20050011810.1002/mnfr.20050011816404706 Search in Google Scholar

11. Nagle DG, Ferreira D, Zhou Y-D. Epigallocate-chin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 2006; 67(17):1849-1855. doi: http://dx.doi.org/10.1016/j.phytochem.2006.06.02010.1016/j.phytochem.2006.06.020290321116876833 Search in Google Scholar

12. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 2011; 82(12):1807-1821. doi: http://dx.doi.org/10.1016/j.bcp.2011.07.09310.1016/j.bcp.2011.07.093408272121827739 Search in Google Scholar

13. Całka J, Zasadowski A, Juranek J. Niektóre aspekty leczniczego działania zielonej herbaty. Bromatol Chem Toksykol 2008; 41(1):5-14. Search in Google Scholar

14. Kanadzu M, Lub Y, Morimoto K. Dual function of (--)-epigallocatechin gallate (EGCG) in healthy human lymphocyte. Cancer Lett 2006; 241(2):250-255. doi: http://dx.doi.org/10.1016/j.canlet.2005.10.02110.1016/j.canlet.2005.10.02116303244 Search in Google Scholar

15. Xu Y, Ho CT, Amin SG, Han C, Chung FL. Inhibition of tobacco-specific nitrosamine-induced lung tumorigenesis in A/J mice by green tea and its major polyphenol as antioxidants. Cancer Res 1992; 52(14):3875-3879 Search in Google Scholar

16. Donejko M, Niczyporuk M, Galicka E, Przylipiak A. Właściwości antynowotworowe galusanu epigallokatechiny zawartego w zielonej herbacie. Post Hig 2013; 67:26-34. doi: http://dx.doi.org/10.5604/17322693.102952810.5604/17322693.102952823475480 Search in Google Scholar

17. Liu X, Zhang D. Y, Zhang W, Zhao X, Yuan C, Ye F. The effect of green tea extract and EGCG on the signaling network in squamous cell carcinoma. Nutr Canc 2011; 63(3):466-475. doi: http://dx.doi.org/10.1080/01635581.2011.53290110.1080/01635581.2011.53290121391127 Search in Google Scholar

18. Fujiki H, Watanabe T, Sueoka E, Rawangkan A, Suganuma M. Cancer prevention with green tea and its principal constituent, EGCG: from early investigations to current focus on human cancer stem cells. Mol Cells 2018; 41(2):73-82. doi: http://dx.doi.org/10.14348/molcells.2018.2227 Search in Google Scholar

19. Pannu N, Bhatnagar A. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed Pharmacother 2019; 109:2237-2251. doi: https://doi.org/10.1016/j.biopha.2018.11.07510.1016/j.biopha.2018.11.07530551481 Search in Google Scholar

20. Petrella C, Carito V, Carere C, Ferraguti G, Ciafre S, Natella F, Ceccanti M. Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition 2020; 79-80. doi: http://dx.doi.org/10.1016/j.nut.2020.11078310.1016/j.nut.2020.11078332569950 Search in Google Scholar

21. Zagórska-Dziok M, Furman-Toczek D, Kruszewski M, Kapka-Skrzypczak L. Resweratrol jako związek chemoprewencyjny w terapii nowotworów. Probl Hig Epidemiol 2016; 97(4):308-317. Search in Google Scholar

22. Pieszka M, Szczurek-Janicka P, Ropka-Molik K, Oczkowicz M, Pieszka M. Rola resweratrolu w regulacji metabolizmu komórkowego. Post Hig 2016; 70:117-123. doi: http://dx.doi.org/10.5604/17322693.119584410.5604/17322693.119584426943309 Search in Google Scholar

23. Maciąg M, Nowak BA. Choroby cywilizacyjne i społeczne XXI w. – przegląd i badania. Lublin: TYGIEL; 2016. Search in Google Scholar

24. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. Prec Oncol 2017; 1(35):1-9. doi: http://dx.doi.org/10.1038/s41698-017-0038-610.1038/s41698-017-0038-6563022728989978 Search in Google Scholar

25. Li H, Xia N, Hasselwander S, Daiber A. Resveratrol and vascular function. Int J Mol Sci 2019; 20(9):2155. doi: http://dx.doi.org/10.3390/ijms2009215510.3390/ijms20092155653934131052341 Search in Google Scholar

26. Pangeni R, Sahni JK, Ali J, Sharma S, Baboota S. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 2014; 11(8):1285-1298. doi: http://dx.doi.org/10.1517/17425247.2014.91925310.1517/17425247.2014.91925324830814 Search in Google Scholar

27. Smoliga JM, Baur JA, Hausenblas HA. Resveratrol and health – A comprehensive review of human clinical trials. Mol Nutr Food Res 2011; 55(8):1129-1141. doi: http://dx.doi.org/10.1002/mnfr.20110014310.1002/mnfr.20110014321688389 Search in Google Scholar

28. Vestergaard M, Ingmer H. Antibacterial and anti-fungal properties of resveratrol. Int J Antimicrob Agents 2019; 53(6):716-723. doi: http://dx.doi.org/10.1016/j.ijantimicag.2019.02.01510.1016/j.ijantimicag.2019.02.01530825504 Search in Google Scholar

29. Filardo S, Di Pietro M, Mastromarino P, Sessa R. Therapeutic potential of resveratrol against emerging respiratory viral infections. Pharmacol and Ther 2020; 214: 107613. doi: http://dx.doi.org/10.1016/j.pharmthera.2020.10761310.1016/j.pharmthera.2020.10761332562826 Search in Google Scholar

30. Marinella MA. Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19. Int J Clin Pract 2020; 74(9). doi: http://dx.doi.org/10.1111/ijcp.1353510.1111/ijcp.13535726199532412158 Search in Google Scholar

31. Mohd A, Zainal N, Tan K-K, AbuBakar S. Resveratrol affects Zika virus replication in vitro. Sci Rep 2019; 9(1). doi: http://dx.doi.org/10.1038/s41598-019-50674-310.1038/s41598-019-50674-3677810331586088 Search in Google Scholar

32. Chakrawarti L, Agrawal R, Dang S, Gupta S, Gabrani R. Therapeutic effects of EGCG: a patent review. Expert Opin Ther Pat 2016; 26(8):907-916. doi: http://dx.doi.org/10.1080/13543776.2016.120341910.1080/13543776.2016.120341927338088 Search in Google Scholar

33. Chen J-Y, Zhu Q, Zhang S, OuYang D, Lu J-H. Resveratrol in experimental Alzheimer’s disease models: A systematic review of preclinical studies. Pharmacol Res 2019; 150:104476. doi: http://dx.doi.org/10.1016/j.phrs.2019.10447610.1016/j.phrs.2019.10447631605783 Search in Google Scholar

34. Pannu N, Bhatnagar A. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed Pharmacother 2019; 109:2237-2251. doi: http://dx.doi.org/10.1016/j.biopha.2018.11.07510.1016/j.biopha.2018.11.07530551481 Search in Google Scholar

35. Sun AY, Wang Q, Simonyi A, Sun GY. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 2010; 41(2-3):375-383. doi: http://dx.doi.org/10.1007/s12035-010-8111-y10.1007/s12035-010-8111-y307620820306310 Search in Google Scholar

36. Borkowska P, Zielinska A, Paul-Samojedny M, Stojko R, Kowalski J. Evaluation of reference genes for quantitative real-time PCR in Wharton’s Jelly-derived mesenchymal stem cells after lentiviral transduction and differentiation. Mol Biol Rep 2020; 47(2):1107-1115. doi: http://dx.doi.org/10.1007/s11033-019-05207-610.1007/s11033-019-05207-631781918 Search in Google Scholar

37. Chachay VS, Kirkpatrick CM, Hickman IJ, Ferguson M, Prins JB, Martin JH. Resveratrol-pills to replace a healthy diet? Br J Clin Pharmacol 2011; 72(1):27-38. doi: http://dx.doi.org/10.1111/j.1365-2125.2011.03966.x10.1111/j.1365-2125.2011.03966.x314118421410504 Search in Google Scholar

38. Lee KW, Kim YJ, Lee HJ, Lee CY. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem 2003; 51(25):7292-7295. doi: http://dx.doi.org/10.1021/jf034438510.1021/jf034438514640573 Search in Google Scholar

39. Omura S, Iwai Y, Hirano A, Nakagawa A, Awaya J, Tsuchya H, Masuma R. A new alkaloid AM-2282 of Streptomyces origin. Taxonomy, fermentation, isolation and preliminary characterization. J Antibiot (Tokyo) 1977; 30(4):275-282. doi: http://dx.doi.org/10.7164/antibiotics.30.27510.7164/antibiotics.30.275863788 Search in Google Scholar

40. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Sharifi-Rad J. Resveratrol: A double-edged sword in health benefits. Biomed 2018; 6(3):91. doi: http://dx.doi.org/10.3390/biomedicines603009110.3390/biomedicines6030091616484230205595 Search in Google Scholar

41. Fujiki H, Sueoka E, Rawangkan A, Suganuma M. Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate. J Cancer Res Clin Oncol 2017; 143(12):2401-2412. doi: http://dx.doi.org/10.1007/s00432-017-2515-210.1007/s00432-017-2515-2569397828942499 Search in Google Scholar

42. Stuart EC, Scandlyn MJ, Rosengren RJ. Role of epigallocatechin gallate (EGCG) in the treatment of breast and prostate cancer. Life Sci 2006; 79(25):2329-2336. doi: http://dx.doi.org/10.1016/j.lfs.2006.07.03610.1016/j.lfs.2006.07.03616945390 Search in Google Scholar

43. Tsang WP, Kwok TT. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 2010; 21(2):140-146. doi: http://dx.doi.org/10.1016/j.jnutbio.2008.12.00310.1016/j.jnutbio.2008.12.00319269153 Search in Google Scholar

44. Bandele OJ, Osheroff N. (-)-Epigallocatechin gallate, a major constituent of green tea, poisons human type II topoisomerases. Chem Res Toxicol 2008; 21(4):936-943. doi: http://dx.doi.org/10.1021/tx700434v10.1021/tx700434v289303518293940 Search in Google Scholar

45. Sugisawa A, Umegaki K. Physiological concentrations of (-)-epigallocatechin-3-O-gallate (EGCg) prevent chromosomal damage induced by reactive oxygen species in WIL2-NS cells. J Nutr 2002; 132(7):1836-1839. doi: http://dx.doi.org/10.1093/jn/132.7.183610.1093/jn/132.7.183612097656 Search in Google Scholar

46. Pervin M, Unno K, Takagaki A, Isemura M, Nakamura Y. Function of green tea catechins in the brain: Epigallocatechin gallate and its metabolites. Int J Mol Sci 2019; 20(15):3630. doi: http://dx.doi.org/10.3390/ijms2015363010.3390/ijms20153630669648131349535 Search in Google Scholar

47. Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A, Bishayee A. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Seminars in Cancer Biology 2020. doi: http://dx.doi.org/10.1016/j.semcancer.2020.05.01110.1016/j.semcancer.2020.05.01132461153 Search in Google Scholar

48. Zeng L, Holly JM, Perks CM. Effects of physiological levels of the green tea extract epigallocate-chin-3-gallate on breast cancer cells. Front Endocrinol (Lausanne) 2014; 5:61. doi: http://dx.doi.org/10.3389/fendo.2014.0006110.3389/fendo.2014.00061401985224847310 Search in Google Scholar

49. Vitaglione P, Sforza S, Galaverna G, Ghidini C, Caporaso N, Vescovi PP, Marchelli R. Bioavailability of trans-resveratrol from red wine in humans. Mol Nutr Food Res 2005; 49(5):495-504. doi: http://dx.doi.org/10.1002/mnfr.20050000210.1002/mnfr.20050000215830336 Search in Google Scholar

50. Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhabibi D, Pintus G. Potential adverse effects of resveratrol: A Literature Review. Int J Mol Sci 2020; 21(6):2084. doi: http://dx.doi.org/10.3390/ijms2106208410.3390/ijms21062084713962032197410 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo