1. bookVolume 67 (2021): Issue 3 (September 2021)
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Microwave-assisted extraction of phenolic compounds from coffee (Coffea robusta L. Linden) bee pollen

Published Online: 15 Nov 2021
Volume & Issue: Volume 67 (2021) - Issue 3 (September 2021)
Page range: 37 - 44
Received: 29 May 2021
Accepted: 12 Aug 2021
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
Summary

Introduction: Coffee bee pollen contains some precious bioactive compounds, especially phenolic compounds. This material is easily found in many regions in Vietnam and is quite useful for human health.

Objective: The main aim of this study was to determine the best extraction conditions for the total polyphenol content (TPC) and antioxidant capacity (AC) of coffee (Coffea robusta L. Linden) bee pollen with microwave-assisted extraction (MAE).

Methods: TPC and AC of extract of coffee (C. robusta) bee pollen were determined using Folin-Ciocalteu (FC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, respectively. In addition, micromorphology of sample was observed using scanning electron micrographs (SEM).

Results: The findings showed that all factors strongly affected the efficiency of the extraction process. The best extraction conditions obtained were ethanol concentration of 60% (v/v), solid to solvent ratio of 1/30 (w/v), extraction time of 7 min, and a microwave power of 314 W.

Conclusion: The highest TPC and AC obtained were 13.73 mg GAE/g DW and 10.08 µmol TE/g DW with aqueous ethanol as the solvent at the optimal extraction condition. In addition, the microstructures of the material changed insignificantly under microwave irradiation.

Keywords

1. Almeida-Muradian LB, Pamplona LC, Coimbra S, Barth OM. Chemical composition and botanical evaluation of dried bee pollen pellets. J Food Compos Anal 2005; 18:105-11. doi: http://dx.doi.org/10.1016/j.jfca.2003.10.00810.1016/j.jfca.2003.10.008 Search in Google Scholar

2. Li QQ, Wang K, Marcucci MC, Sawaya ACHF, Hu L, Xue AF et al. Nutrient-rich bee pollen: A treasure trove of active natural metabolites. J Funct Foods 2018; 49:472-484. doi: http://dx.doi.org/10.1016/j.jff.2018.09.00810.1016/j.jff.2018.09.008 Search in Google Scholar

3. Sattler JAG, de Melo ILP, Granato D, Araújo E, de Freitas ADS, Barth OM et al. Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil. Food Res Int 2015; 77:82-91. doi: http://dx.doi.org/10.1016/j.foodres.2015.09.01310.1016/j.foodres.2015.09.013 Search in Google Scholar

4. Komosinska-Vassev K, Olczyk P, Kafmierczak J, Mencner L, Olczyk K. Bee pollen: Chemical composition and therapeutic application. J Evidence-Based Complementary Altern Med 2015; ID 297425.10.1155/2015/297425437738025861358 Search in Google Scholar

5. Yen NTH, Quoc LPT. Chemical composition of dried Stevia rebaudiana Bertoni leaves and effect of ultrasound-assisted extraction on total steviosides content in extract. Herba Pol 2021; 67(1):1-7. doi: http://dx.doi.org/10.2478/hepo-2021-000310.2478/hepo-2021-0003 Search in Google Scholar

6. Quoc LPT, Muoi NV. Microwave-assisted extraction of phenolic compounds from Polygonum multiflorum Thunb. roots. Acta Sci Pol Technol Aliment 2016; 15(2):181-189. doi: http://dx.doi.org/10.17306/J.AFS.2016.2.1810.17306/J.AFS.2016.2.1828071008 Search in Google Scholar

7. Pinelo M, Rubilar M, Jerez M, Sineiro J, Núnez MJ. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and anti-radical activity of extracts from different components of grape pomace. J Agric Food Chem 2005; 53:2111-2117.10.1021/jf048811015769143 Search in Google Scholar

8. Statista Research Department. http://www.statista.com/statistics/315003/vietnam-total-coffee-consumption, accessed in March 18. 2021. Search in Google Scholar

9. Quoc LPT, Muoi NV. Effects of treatment methods on total polyphenol content and antioxidant activity of Polygonum multiflorum Thunb. root extract. Annals Food Sci Technol 2015; 16(1):78-84. Search in Google Scholar

10. Tan MC, Tan CP, Ho CW. Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. Int Food Res J 2013; 20(6):3117-3123. Search in Google Scholar

11. Ares AM, Valverde S, Bernal JL, Nozal MJ, Bernal J. Extraction and determination of bioactive compounds from bee pollen. J Pharm Biomed Anal 2018; 147:110-124. doi: http://dx.doi.org/10.1016/j.jpba.2017.08.00910.1016/j.jpba.2017.08.00928851545 Search in Google Scholar

12. Galan AM, Calinescu I, Trifan A, Winkworth-Smith C, Calvo-Carrascal M, Dodds C et al. New insights into the role of selective and volumetric heating during microwave extraction: Investigation of the extraction of polyphenolic compounds from sea buckthorn leaves using microwave-assisted extraction and conventional solvent extraction. Chem Eng Process 2017; 116:29-39. doi: http://dx.doi.org/10.1016/j.cep.2017.03.00610.1016/j.cep.2017.03.006 Search in Google Scholar

13. Kostić AŽ, Milinčić DD, Gašić UM, Nedić N, Stanojević SP, Tešić ŽL et al. Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. LWT - Food Sci Technol 2019; 112:108244. doi: http://dx.doi.org/10.1016/j.lwt.2019.06.01110.1016/j.lwt.2019.06.011 Search in Google Scholar

14. Chirinos R, Rogez H, Campos D, Pedreschi R, Larondelle Y. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep Purif Technol 2007; 55:217-225. doi: http://dx.doi.org/10.1016/j.seppur.2006.12.00510.1016/j.seppur.2006.12.005 Search in Google Scholar

15. Rzepecka-Stojko A, Stojko J, Kurek-Górecka A, Górecki M, Sobczak A, Stojko R et al. Polyphenol content and antioxidant activity of bee pollen extracts from Poland. J Apic Res 2016; 54(5):482-490. doi: http://dx.doi.org/10.1080/00218839.2016.118691610.1080/00218839.2016.1186916 Search in Google Scholar

16. Zhao CN, Zhang JJ, Li Y, Meng X, Li HB. Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: Optimization and identification. Molecules 2018; 23(10):ID 2498. doi: http://dx.doi.org/10.3390/molecules2310249810.3390/molecules23102498 Search in Google Scholar

17. Al-Farsi MA, Lee CY. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem 2008; 108:977-985. doi: http://dx.doi.org/10.1016/j.foodchem.2007.12.00910.1016/j.foodchem.2007.12.009 Search in Google Scholar

18. Herodež ŠS, Hadolin M, Škerget M, Knez Ž. Solvent extraction study of antioxidants from Balm (Melissa officinalis L.) leaves. Food Chem 2003; 80:275-282. doi: http://dx.doi.org/10.1016/S0308-8146(02)00382-510.1016/S0308-8146(02)00382-5 Search in Google Scholar

19. Naczk M, Shahidi F. Extraction and analysis of phenolics in food. J Chromatogr A 2004; 1054:97-103. doi: http://dx.doi.org/10.1016/j.chroma.2004.08.05910.1016/j.chroma.2004.08.059 Search in Google Scholar

20. Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S et al. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol 2009; 70:63-70. doi: http://dx.doi.org/10.1016/j.seppur.2009.08.01210.1016/j.seppur.2009.08.012 Search in Google Scholar

21. Wu T, Yan J, Liu R, Marcone MF, Aisa HA, Tsao R. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem 2012; 133:1292-1298. doi: http://dx.doi.org/10.1016/j.foodchem.2011.08.00210.1016/j.foodchem.2011.08.002 Search in Google Scholar

22. Quoc LPT, Muoi NV. Pectinase-assisted extraction of phenolic compounds from Polygonum multiflorum Thunb. root. Carpathian J Food Sci Technol 2017; 9(3):30-37. Search in Google Scholar

23. Aybastier O, Isık E, Sahin S, Demir C. Optimization of ultrasonic-assisted extraction of anti-oxidant compounds from blackberry leaves using response surface methodology. Ind Crops Prod 2013; 44:558-565. doi: http://dx.doi.org/10.1016/j.indcrop.2012.09.02210.1016/j.indcrop.2012.09.022 Search in Google Scholar

24. Kaderides K, Papaoikonomou L, Serafim M, Goula AM. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem Eng Process 2019; 137:1-11. doi: http://dx.doi.org/10.1016/j.cep.2019.01.00610.1016/j.cep.2019.01.006 Search in Google Scholar

25. Spigno G, De Faveri DM. Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. J Food Eng 2007; 78:793-801. doi: http://dx.doi.org/10.1016/j.jfoodeng.2005.11.02010.1016/j.jfoodeng.2005.11.020 Search in Google Scholar

26. Zhou HY, Liu CZ. Microwave-assisted extraction of solanesol from tobacco leaves. J Chromatogr A 2006; 1129:135-139. doi: http://dx.doi.org/10.1016/j.chroma.2006.07.08310.1016/j.chroma.2006.07.08316919654 Search in Google Scholar

27. Jiao J, Li ZG, Gai QY, Li XJ, Wei FY, Fu YJ et al. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chem 2014; 147:17-24. doi: http://dx.doi.org/10.1016/j.foodchem.2013.09.07910.1016/j.foodchem.2013.09.07924206680 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo