[
1. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia 2001; 44(2):129-146. doi: http://dx.doi.org/10.1007/s00125005159110.1007/s001250051591
]Search in Google Scholar
[
2. Ahmed N, Babaei-Jadidi R, Howell S, Thornalley P, Beisswenger P. Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care 2005; 28(10):2465-2471. doi: http://dx.doi.org/10.2337/diacare.28.10.246510.2337/diacare.28.10.2465
]Search in Google Scholar
[
3. Freedman BI, Wuerth JP, Cartwright K, Bain RP, Dippe S, Hershon K, et al. Design and baseline characteristics for the aminoguanidine clinical trial in overt type 2 diabetic nephropathy (ACTION II). Control Clin Trials 1999; 20(5):493-510. doi: http://dx.doi.org/10.1016/s0197-2456(99)00024-010.1016/S0197-2456(99)00024-0
]Search in Google Scholar
[
4. Alam S, Ahsan A, Alam S. Newer insights in drugs inhibiting formation and accumulation of advanced glycation end products. J Biochem Tech 2013; 5:666-672.
]Search in Google Scholar
[
5. Vo TS, Ngo DH. The health beneficial properties of Rhodomyrtus tomentosa as potential functional food. Biom 2019; 9(2):76. doi: http://dx.doi.org/10.3390/biom902007610.3390/biom9020076
]Search in Google Scholar
[
6. Ighodaro OM, Akinloye OA. Anti-diabetic potential of Sapium ellipticum (Hochst) pax leaf extract in streptozocin (STZ)-induced diabetic Wistar rats. BMC Comp Altern Med 2017; 17:525-529. doi: http://dx.doi.org/10.1186/s12906-017-2013-810.1186/s12906-017-2013-8
]Search in Google Scholar
[
7. Cheng D, Liang B, Li Y. Antihyperglycemic effect of Ginkgo biloba extract in streptozocin-induced diabetes in rats. Biomed Res Int 2013; 162724. doi: https://dx.doi.org/10.1155/2013/16272410.1155/2013/162724
]Search in Google Scholar
[
8. Sofowora A. Screening plants for bioactive agents. In: Medicinal plants and traditional medicinal in Africa. 2nd ed. Ibadan. Spectrum Books, 1993:134-156.
]Search in Google Scholar
[
9. Edeoga HO, Okwu DE, Mbaebie BO. Phyto-chemical constituents of some Nigerian medicinal plants. Afr J Biotechnol 2005; 4(7):685-688. https://academicjournals.org/article/article1380041849_Edeoga%20et%20al.pdf10.5897/AJB2005.000-3127
]Search in Google Scholar
[
10. Harborne JB. Phytochemical methods – A guide to modern techniques of plant analysis. 2nd ed. New Delhi. Springer Science & Business Media, 2005.
]Search in Google Scholar
[
11. Zhao Z, Wu L, Xie J, Feng Y, Tian J, He X, Li B, et al. Rhodomyrtus tomentosa (Aiton): a review of phytochemistry, pharmacology and industrial application research progress. Food Chem 2020; 309:125715. doi: http://dx.doi.org/10.1016/j.foodchem.2019.12571510.1016/j.foodchem.2019.125715
]Search in Google Scholar
[
12. Wu P, Ma G, Li N, Deng Q, Yin Y, Huang R. Investigation of in vitro and in vivo antioxidant activities of flavonoid rich extract from the berries of Rhodomyrtus tomentosa (Ait.) Hassk. Food Chem 2015; 173:194-202. doi: http://dx.doi.org/10.1016/j.foodchem.2014.10.02310.1016/j.foodchem.2014.10.023
]Search in Google Scholar
[
13. Johnson M. Biochemical variation studies in Aegle marmelos L. Corr: a medicinally important plant. J Chem Pharm Res 2010; 2(6):454-462.
]Search in Google Scholar
[
14. Patel PK, Sahu J, Sahu L, Prajapati NK, Dubey BK. Aegle marmelos: A review on its medicinal properties. Int J Pharm Phytopharmacol Res 2012; 1(5):332-341.
]Search in Google Scholar
[
15. Kamalakkanan N, Prince PSM. Hypoglycemic effect of water extract of Aegle marmelos fruits in streptozotocin diabetic rats. J Ethnopharmacol 2003; 87(2-3):207-210. doi: http://dx.doi.org/10.1016/s0378-8741(03)00148-x10.1016/S0378-8741(03)00148-X
]Search in Google Scholar
[
16. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28:412-419. doi: http://dx.doi.org/10.1007/BF0028088310.1007/BF00280883
]Search in Google Scholar
[
17. Hafizur RM, Kabir N, Chishti S. Modulation of pancreatic β-cells in neonatally streptozotocin induced type 2 diabetic rats by the ethanolic extract of Momordica charantia fruit pulp. Nat Prod Res 2011; 25(4): 353-367. doi: http://dx.doi.org/10.1080/1478641100376690410.1080/14786411003766904
]Search in Google Scholar
[
18. Hafizur RM, Kabir N, Chishti S. Asparagus officinalis extract controls blood glucose by improving insulin secretion and β-cell function in streptozotocin-induced type 2 diabetic rats. Br J Nutr 2012;108 (9):1586-1595. doi: https://dx.doi.org/10.1017/S000711451100714810.1017/S0007114511007148
]Search in Google Scholar
[
19. Siddiqui BS, Hasan M, Mairaj F, Mehmood I, Hafizur RM, Hameed A, et al. Two new compounds from the aerial parts of Bergenia himalaica Boriss and their anti-hyperglycemic effect in streptozotocin-nicotinamide induced diabetic rats. J Ethnopharmacol 2014; 152(3):561-567. doi: http://dx.doi.org/10.1016/j.jep.2014.02.00210.1016/j.jep.2014.02.002
]Search in Google Scholar
[
20. Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, et al. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine 2015; 22(2):297-300. doi: http://dx.doi.org/10.1016/j.phymed.2015.01.00310.1016/j.phymed.2015.01.003
]Search in Google Scholar
[
21. Sachdewa A, Raina D, Srivastava AK, Khemani LD. Effect of Aegle marmelos and Hibiscus rosa sinensis leaf extract on glucose tolerance in glucose induced hyperglycemic rats (Charles foster). J Environ Biol 2001; 22(1):53-57.
]Search in Google Scholar
[
22. Kamalakkannan N, Prince PSM. The effect of Aegle marmelos fruit extract in streptozotocin diabetes: a histopathological study. J Herb Pharmacother 2005; 5(3):87-89.10.1080/J157v05n03_08
]Search in Google Scholar
[
23. Esmaeili MA, Zohari F, Sadeghi H. Antioxidant and protective effects of major flavonoids from Teucrium polium on beta-cell destruction in a model of streptozotocin-induced diabetes. Planta Med 2009; 75(13):1418-1420. doi: http://dx.doi.org/10.1055/s-0029-118570410.1055/s-0029-1185704
]Search in Google Scholar
[
24. Noumura E, Kashiwada A, Hosoda A, Nakamura K, Morishita H, Tsuno T, et al. Synthesis of amide compounds of ferulic acid and their stimulatory effects on insulin secretion in vitro. Bioorg Med Chem 2003;11(17): 3807-3813. http://dx.doi.org/10.1016/s0968-0896(03)00280-310.1016/S0968-0896(03)00280-3
]Search in Google Scholar
[
25. Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur J Nutr 2017; 56(2):591-601. doi: http://dx.doi.org/10.1007/s00394-015-1103-y10.1007/s00394-015-1103-y26593435
]Search in Google Scholar
[
26. Papaccio G, Mezzogiorno M. Morphological aspect of glucagon and somatostatin islet cells in diabetic biobreeding and low-dose streptozotocin-treated Wistar rats. Pancreas 1989;4(3):289-294. doi: http://dx.doi.org/10.1097/00006676-198906000-0000310.1097/00006676-198906000-000032567512
]Search in Google Scholar
[
27. Pons P, Aoki A. Differential proliferation of somatostatin and glucagon cells in rat pancreatic islets submitted to different stimuli. Ann Anat 1995; 177(3):221-227. doi: http://dx.doi.org/10.1016/S0940-9602(11)80189-510.1016/S0940-9602(11)80189-5
]Search in Google Scholar
[
28. Vo TS, Le TT, Kim S, Ngo D. The role of myricetin from Rhodomyrtus tomentosa (Aiton) Hassk. fruit on downregulation of FcERI-mediated mast cell activation. J Food Biochem 2020; 44(3):e13143. doi: http://dx.doi.org/10.1111/jfbc.1314310.1111/jfbc.1314331910490
]Search in Google Scholar
[
29. Lai TNH, Andre C, Rogez H, Mignolet E, Nguyen TBT, Larondelle Y. Nutritional composition and antioxidant properties of the sim fruit (Rhodomyrtus tomentosa). Food Chem 2015; 168:410-416. doi: http://dx.doi.org/10.1016/j.food-chem.2014.07.081
]Search in Google Scholar
[
30. Zhang Y, Li W, Jiang L, Yang L, Chen N, Wu Z, et al. Cytotoxic and anti-inflammatory active phloroglucinol derivatives from Rhodomyrtus tomentosa. Phytochem 2018; 153:111-119. doi: http://dx.doi.org/10.1016/j.phytochem.2018.05.01810.1016/j.phytochem.2018.05.01829906657
]Search in Google Scholar