1. bookVolume 64 (2018): Issue 2 (June 2018)
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Antioxidant, antibacterial properties and the light barrier assessment of raw and purified melanins isolated from Citrullus lanatus (watermelon) seeds

Published Online: 20 Jul 2018
Volume & Issue: Volume 64 (2018) - Issue 2 (June 2018)
Page range: 25 - 36
Received: 18 Jan 2018
Accepted: 13 Apr 2018
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English

1. Deshmukh CD, Jain A, Tambe MS. Phytochemical and pharmacological profile of Citrullus lanatus (Thunb). Biolife 2015; 3(2):483-488. doi: http://dx.doi.org/10.17812/blj2015.32.1810.17812/blj2015.32.18Open DOISearch in Google Scholar

2. Mehra M, Pasricha V, Gupta R. Estimation of nutritional, phytochemical and antioxidant activity of seeds of musk melon (Cucumis melo) and water melon (Citrullus lanatus) and nutritional analysis of their respective oils. J Pharmacogn Phytochem 2015; 3(6):98-102.Search in Google Scholar

3. Tabiri B, Agbenorhevi JK, Wireko-Manu FD, Ompouma EI. Watermelon seeds as food: nutrient composition, phytochemicals and antioxidant activity. IJNFS 2016; 5(2):139-144. doi: http://dx.doi.org/10.11648/j.ijnfs.20160502.1810.11648/j.ijnfs.20160502.18Open DOISearch in Google Scholar

4. Adetutu A, Olorunnisola OS, Owoade OA. Nutritive values and antioxidant activity of Citrullus lanatus fruit extract. Food Nutr Sci 2015; 6:1056-1064. doi: http://dx.doi.org/10.4236/fns.2015.61110910.4236/fns.2015.611109Open DOISearch in Google Scholar

5. Seidu KT, Otutu OL. Phytochemical composition and radical scavenging activities of watermelon (Citrullus lanatus) seeds constituents. Croat J Food Sci Technol 2016; 8(2):83-89. doi: http://dx.doi.org/10.17508/CJFST.2016.8.2.0710.17508/CJFST.2016.8.2.07Open DOISearch in Google Scholar

6. Edwards AJ, Vinyard BT, Wiley ER, Brown ED, Collins JK, Perkins-Veazie P et al. Consumption of watermelon juice increase plasma concentrations of lycopene and β-carotene in humans. J Nutr 2003; 133:1043-1050.10.1093/jn/133.4.1043Search in Google Scholar

7. Scheiber A, Stintzing FC, Carle R. By-products of plant food processing as a source of functional compounds – recent developments. Trends Food Sci Technol 2001; 12(11):401-413. doi: http://dx.doi.org/10.1016/S0924-2244(02)00012-210.1016/S0924-2244(02)00012-2Open DOISearch in Google Scholar

8. Wani AA, Sogi DS, Singh P, Wani IA, Shivhare US. Characterisation and functional properties of watermelon (Citrullus lanatus) seeds proteins. J Sci Food Agric 2011; 91:113-121. doi: http://dx.doi.org/10.1002/jsfa.416010.1002/jsfa.416020824684Search in Google Scholar

9. Sani UM. Phytochemical screening and antidiabetic effect of extracts of the seeds of Citrullus lanatus in alloxan-induced diabetic albino mice. J Appl Pharm Sci 2015; 5(3):51-54. doi: http://dx.doi.org/10.7324/JAPS.2015.5030910.7324/JAPS.2015.50309Open DOISearch in Google Scholar

10. Rahman H, Manjula K, Anoosha T, Nagaveni K, Chinna Eswaraiah M, Bardalai D. In-vitro and antioxidant activity of Citrullus lanatus seeds extracts. Asian J Pharm Clin Res 2013; 6(3):152-157.Search in Google Scholar

11. Oyeleke GO, Olagunju EO, Ojo A. Functional and physiochemical properties of watermelon (Citrullus lanatus) seeds and seed-oil. IOSR-JAC 2012; 2(2):29-31. doi: http://dx.doi.org/10.9790/5736-022293110.9790/5736-0222931Open DOISearch in Google Scholar

12. Koocheki A, Razavi SMA, Milani E, Moghadam TM, Abedini M, Alamatiyan S et al. Physical properties of watermelon seed as a function of moisture content and variety. Int Agrophysics 2007; 21:349-359.Search in Google Scholar

13. Erhirhie EO, Ekene NE. Medicinal values of Citrullus lanatus (Watermelon): Pharmacological review. IJRPBS 2013; 4(4):1305-1312.Search in Google Scholar

14. Mbonyiryivuze A, Nuru ZY, Ngom BD, Mwakikunga B, Dhlamini SM, Park E et al. Morphological and chemical composition characterization of commercial sepia melanin. AJN 2015; 3(1):22-27. doi: http://dx.doi.org/10.12691/ajn-3-1-310.12691/ajn-3-1-3Open DOISearch in Google Scholar

15. Li H, Li J, Zhao Z. Characterisation of melanin isolated from apricot (Armeniaca sibirica) and its effect on hydrazine-induced rat hepatic injury. Sci Asia 2016; 42:382-391. doi: http://dx.doi.org/10.2306/scienceasia1513-1874.2016.42.38210.2306/scienceasia1513-1874.2016.42.382Open DOISearch in Google Scholar

16. Wang H, Pan Y, Tang X, Huang Z. Isolation and characterization of melanin from Osmanthus fragrans’ seeds. LWT – Food Sci Technol 2006; 39(5):496-502. doi: http://dx.doi.org/10.1016/j.lwt.2005.04.00110.1016/j.lwt.2005.04.001Open DOISearch in Google Scholar

17. Kannan P, Ganjewala D. 2009. Preliminary characterization of melanin isolated form frutis and seeds of Nyctanthes arbor-tristis. J Sci Res 1(3):655-661. doi: http://dx.doi.org/10.3329/jsr.v1i3.200510.3329/jsr.v1i3.2005Open DOISearch in Google Scholar

18. Cuevas-Juárez E, Yuriar-Arredondo KY, Pío-León JF, Montes-Avila J, López-Angulo G, Díaz-Camacho SP et al. Antioxidant and α-glucosidase inhibitory properties of soluble melanins from the fruits of Vitex mollis Kunth, Randia echinoc-arpa Sessé et Mociño and Crescentia alata Kunth. J Funct Foods 2014; 9:78-88. doi: http://dx.doi.org/10.1016/j.jff.2014.04.01610.1016/j.jff.2014.04.016Open DOISearch in Google Scholar

19. Al-Tayib OA, El Tahir KE, Idriss MH, Eram KE, Hassib AM. Nigella sativa L. seeds melanin: A new hypoglycemic agent. Comparison with insulin in alloxan-diabetic rats. SAJP 2014; 3:332-335.Search in Google Scholar

20. Chitturi S, Gopichand V, Vuppu S. Studies on protein content, protease activity, antioxidants potential, melanin composition, glucosinolate and pectin constitution with brief statistical analysis in some medicinally significant fruit peels. Der Pharmacia Lettre 2013; 5(1):13-23.Search in Google Scholar

21. Sava V, Galkin B, Hung MY, Yang PC, Huang GS. A novel melanin-like pigment derived from black tea leaves with immuno-stimulating activity. Food Res Int 2001; 34:337-343. doi: http://dx.doi.org/10.1016/S0963-9969(00)00173-310.1016/S0963-9969(00)00173-3Open DOISearch in Google Scholar

22. Kurian NK, Nair HP, Bhat SG. Melanin producing Pseudomonas stutzeri BTCZ10 from marine sediment at 96 m depth (Sagar Sampada cruise #305). Int J Curr Biotechnol 2014; 2(5):6-11.Search in Google Scholar

23. Laxmi M, Kurian NK, Smitha S, Bhat SG. Melanin and bacteriocin from marine bacteria inhibit biofilms of foodborne pathogens. Indian J Biotechnol 2016; 15(3):392-399.Search in Google Scholar

24. Łopusiewicz Ł. Isolation, characterisation and biological activity of melanin from Exidia nigri-cans. WSN 2018; 91:111-129.Search in Google Scholar

25. Łopusiewicz Ł. Scleroderma citrinum melanin: isolation, purification, spectroscopic studies with characterization of antioxidant, antibacterial and light barrier properties. WSN 2018; 94:114-129.Search in Google Scholar

26. Solano F. Melanins: skin pigments and much more – types, structural models, biological functions, and formation routes. New J Sci 2014. doi: http://dx.doi.org/10.1155/2014/49827610.1155/2014/498276Open DOISearch in Google Scholar

27. Zhang M, Xiao G, Thring RW, Chen W, Zhou H, Yang H. Production and characterization of melanin by submerged culture of culinary and medicinal fungi Auricularia auricula. Appl Biochem Biotechnol 2015; 176:253-266. doi: http://dx.doi.org/10.1007/s12010-015-1571-910.1007/s12010-015-1571-925800528Open DOISearch in Google Scholar

28. Yao Z, Qi J, Wang L. Isolation, fractionation and characterization of melanin-like pigments from chestnut (Castanea mollissima) shells. J Food Sci 2012; 77(6):671-676. doi: http://dx.doi.org/10.1111/j.1750-3841.2012.02714.x10.1111/j.1750-3841.2012.02714.x22583104Open DOISearch in Google Scholar

29. Selvakumar P, Rajasekar S, Periasamy K, Raaman N. Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsis macrocarpa). World J Micro-biol Biotechnol 2008; 24:2125-2131. doi: http://dx.doi.org/10.1007/s11274-008-9718-210.1007/s11274-008-9718-2Open DOISearch in Google Scholar

30. Zhan F, He Y, Zu Y, Li T, Zhao Z. Characterisation of melanin isolated form a dark septate endophyte (DSE), Exophiala pisciphila. World J Microbiol Biotechnol 2011; 27:2483-2489. doi: http://dx.doi.org/10.1007/s11274-011-0712-810.1007/s11274-011-0712-8Open DOISearch in Google Scholar

31. Ye M, Wang Y, Qian M, Chen X, Hu X. Preparation and properties of the melanin from Lachnum singerianum. IJBAS-IJENS 2011; 11(3):51-58.Search in Google Scholar

32. Nerson H. Effects of seed maturity, extraction practices and storage duration on germinability in watermelon. Sci Hort 2002; 93:245-256. doi: http://dx.doi.org/10.1016/S0304-4238(01)00332-610.1016/S0304-4238(01)00332-6Open DOISearch in Google Scholar

33. Mavi K. The relationship between seed coat color and seed quality in watermelon Crimson sweet. Hort Sci (Prague) 2010; 37(2):62-69.10.17221/53/2009-HORTSCISearch in Google Scholar

34. Zhang XK, Yang GT, Chen L, Yin JM, Tang ZL, Li JN. Physiological differences between yellow-seeded and black-seeded rapeseed (Brassica napus L.) with different testa characteristics during artificial ageing. Seed Sci Technol 2006; 34:373-381. doi: http://dx.doi.org/10.15258/sst.2006.34.2.1310.15258/sst.2006.34.2.13Open DOISearch in Google Scholar

35. Różanowska M, Sarna T, Land EJ, Truscott TG. Free radical scavenging properties of melanin: interaction of eu- and pheo-melanin models with reducing and oxidizing radicals. Free Radic Biol Med 1999; 26:518-525. doi: http://dx.doi.org/10.1016/S0891-5849(98)00234-210.1016/S0891-5849(98)00234-2Open DOISearch in Google Scholar

36. Hung Y-Ch, Sava V, Makan S, Chen Tz-HJ, Hong M-Y, Huang GS. Antioxidant activity of melanins derived from tea: comparision beteen different oxidative states. Food Chem 2002; 78:233-240. doi: http://dx.doi.org/10.1016/S0308-8146(01)00403-410.1016/S0308-8146(01)00403-4Open DOISearch in Google Scholar

37. Adunola AT, Chidimma AL, Olatunde DS, Peter OA. Antibacterial activity of watermelon (Citrullus lanatus) seed against selected microorganisms. Afr J Biotechnol 2015; 14(14):1224-1229. doi: http://dx.doi.org/10.5897/AJB2014.1410110.5897/AJB2014.14101Open DOISearch in Google Scholar

38. Thirunavukkarasu P, Ramanathan T. Screening of antimicrobial effects of watermelon. J Biol Sci 2010; 10:682-685. doi: http://dx.doi.org/10.3923/jbs.2010.682.68510.3923/jbs.2010.682.685Search in Google Scholar

39. Sathya J, Shoba FG. Assessment of antimicrobial efficacy of Citrullus lanatus methanolic seed extract. J Chem Pharm Res 2014; 6(12):640-643.Search in Google Scholar

40. Helan Soundra Rani M, Ramesh T, Subramanian J, Kalaiselvam M. Production and characterization of melanin pigment from halophilic black yeast Horatea werneckii. IJPRR 2013; 2(8):9-17.Search in Google Scholar

41. Xu C, Li J, Yang L, Shi F, Yang L, Ye M. Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food Control 2017; 73:1445-1451. doi: http://dx.doi.org/10.1016/j.foodcont.2016.10.04810.1016/j.foodcont.2016.10.048Open DOISearch in Google Scholar

42. Correa N, Covarrubias C, Rodas PI, Hermosilla G, Olate VR, Valdés C et al. Differential antifungal activity of human and cryptococcal melanins with structural discrepancies. Front Microbiol 2017; 8:1-13. doi: http://dx.doi.org/10.3389/fmicb.2017.0129210.3389/fmicb.2017.01292550415828744276Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo