1. bookVolume 28 (2020): Issue 2 (December 2020)
Journal Details
License
Format
Journal
First Published
30 Jul 2019
Publication timeframe
2 times per year
Languages
English
access type Open Access

On the reconstruction via Urysohn-Chlodovsky operators

Published Online: 31 Dec 2020
Page range: 19 - 32
Received: 05 May 2020
Accepted: 27 Jul 2020
Journal Details
License
Format
Journal
First Published
30 Jul 2019
Publication timeframe
2 times per year
Languages
English
Abstract

The main first goal of this work is to introduce an Urysohn type Chlodovsky operators defined on positive real axis by using the Urysohn type interpolation of the given function f and bounded on every finite subinterval. The basis used in this construction are the Fréchet and Prenter Density Theorems together with Urysohn type operator values instead of the rational sampling values of the function. Afterwards, we will state some convergence results, which are generalization and extension of the theory of classical interpolation of functions to operators.

Keywords

MSC 2010

[1] U. Abel, H. Karsli, Asymptotic expansions for Bernstein-Durrmeyer-Chlodovsky polynomials, Results Math, 73:104, 2018, 12 pages, https://doi.org/10.1007/s00025-018-0863-0.Search in Google Scholar

[2] U. Abel, H. Karsli, A complete asymptotic expansion for Bernstein-Chlodovsky polynomials for functions on ℝ,, Mediterranean Journal of Mathematics, 2020 accepted.Search in Google Scholar

[3] F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, Walter de Gruyter and Co., Berlin, 17, 1994.Search in Google Scholar

[4] C. Bardaro, J. Musielak, G. Vinti, Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, vol. 9, 2003.Search in Google Scholar

[5] P. L. Butzer, On Bernstein Polynomials, Ph.D. Thesis, University of Toronto, 1951.Search in Google Scholar

[6] P. L. Butzer, On two dimensional Bernstein polynomials, Canad. J. Math., vol. 5, 1953, 107-113.Search in Google Scholar

[7] P. L. Butzer, H. Karsli, Voronovskaya-type theorems for derivatives of the Bernstein-Chlodovsky polynomials and the Szasz-Mirakyan operator, Comment. Math., vol. 49, 2009, 33-58.Search in Google Scholar

[8] P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation, Academic Press, New York, London, 1971.Search in Google Scholar

[9] I. Chlodowsky, Sur le développement des fonctions définies dans un intervalle infini en séries de polynomes de M. S. Bernstein, Compositio Math., vol. 4, 1937, 380-393.Search in Google Scholar

[10] I. I. Demkiv, On Approximation of the Urysohn operator by Bernstein type operator polynomials, Visn. L’viv. Univ., Ser. Prykl. Mat. Inform., no. 2, 2000, 26 - 30.Search in Google Scholar

[11] H. Karsli, Recent results on Chlodovsky operators, Stud. Univ. Babeş-Bolyai Math., vol. 56, no. 2, 2011, 423-436.Search in Google Scholar

[12] H. Karsli, Approximation by Urysohn type Meyer-König and Zeller operators to Urysohn integral operators, Results Math., vol. 72, no. 3, 2017, 1571-1583.Search in Google Scholar

[13] H. Karsli, Approximation results for Urysohn type nonlinear Bernstein operators, Advances in Summability and Approximation Theory, Springer, Singapore, 2018, 223-241.Search in Google Scholar

[14] H. Karsli, Voronovskaya-type theorems for Urysohn type nonlinear Bernstein operators, Math. Methods Appl. Sci., vol. 42, no. 16, 2019, 5190-5198.Search in Google Scholar

[15] H. Karsli, Approximation Results for Urysohn Type Two Dimensional Nonlinear Bernstein Operators, Const. Math. Anal., vol. 1, no. 1, 2018, 45-57.Search in Google Scholar

[16] H. Karsli, Some Approximation Properties of Urysohn type nonlinear operators, Stud. Univ. Babes-Bolyai Math., vol. 64, no. 2, 2019, 183-196.Search in Google Scholar

[17] H. Karsli, On Urysohn type Generalized Sampling Operators, Dolomites Research Notes on Approximation, 2020, accepted.Search in Google Scholar

[18] G. G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.Search in Google Scholar

[19] V. L. Makarov, I. I. Demkiv, Approximation of the Urysohn operator by operator polynomials of Stancu type, Ukrainian Math Journal, vol. 64, no. 3, 2012, 356-386.Search in Google Scholar

[20] V. L. Makarov, V. V. Khlobystov, Interpolation method for the solution of identification problems for a functional system described by the Urysohn operator, Dokl. Akad. Nauk SSSR, vol. 300, no. 6, 1988, 1332-1336.Search in Google Scholar

[21] A. D. Polyanin, A. V. Manzhirov, Handbook of Integral Equations, 2nd ed., Chapman and Hall/CRC Press, 2008.Search in Google Scholar

[22] P. Urysohn, Sur une classe d’equations integrales non lineaires, Mat. Sb., vol. 31, 1923, 236-255.Search in Google Scholar

[23] P. Urysohn, On a type of nonlinear integral equation, Mat. Sb., vol. 31, 1924, 236-355.Search in Google Scholar

[24] A. M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications, Beijing and Springer-Verlag Berlin, Higher Education press, 2011.Search in Google Scholar

[25] P. P. Zabreiko, A. I. Koshelev, M. A. Krasnosel’skii, S. G. Mikhlin, L. S. Rakovscik, V. Ja. Stetsenko, Integral Equations: A Reference Text, Noordhoff Int. Publ., Leyden, 1975.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo