1. bookVolume 41 (2022): Issue 3 (September 2022)
Journal Details
License
Format
Journal
eISSN
1337-947X
First Published
24 Aug 2013
Publication timeframe
4 times per year
Languages
English
Open Access

Definition of hot-spots to reduce the nitrogen losses from agricultural land to groundwater in Slovakia

Published Online: 17 Oct 2022
Volume & Issue: Volume 41 (2022) - Issue 3 (September 2022)
Page range: 291 - 300
Received: 17 May 2022
Accepted: 14 Aug 2022
Journal Details
License
Format
Journal
eISSN
1337-947X
First Published
24 Aug 2013
Publication timeframe
4 times per year
Languages
English

Ackermann, A., Mahnkopf, J., Heidecke, C. & Venohr M. (2016). Reducing agricultural nitrogen inputs in the German Baltic Sea catchment - trends and policy options. Water Sci. Technol., 74, 1060‒1068. DOI: 10.2166/wst.2016.267.27642825 Open DOISearch in Google Scholar

Andjelov, M., Kunkel, R., Uhan, J. & Wendland F. (2014). Determination of nitrogen reduction levels necessary to reach groundwater quality targets in Slovenia. J. Environ. Sci. (China), 26, 1806‒1817. DOI: 10.1016/j.jes.2014.06.027.25193828 Open DOISearch in Google Scholar

Ascott, M.J., Gooddy, D.C., Fenton, O., Vero, O., Ward, R.S., Basu, N.B., Worrall, F., Van Meter, K. & Surridge B.W.J. (2021). The need to integrate legacy nitrogen storage dynamics and time lags into policy and practice. Sci. Total Environ., 781, 146698. DOI: 10.1016/j.scitotenv.2021.146698.33794450 Open DOISearch in Google Scholar

Ascott, M.J., Goody, D.C., Wang, L., Stuart, M.E., Lewis, M.A., Ward, R.S. & Binley A.M. (2017). Global patterns of nitrate storage in the vadose zone. Nature Communications, 8, 1416. DOI: 10.1038/s41467-017-01321-w.568025929123090 Open DOISearch in Google Scholar

Biernat, L., Taube, F., Vogeler, I., Reinsch, T., Kluß, Ch. & Loges R. (2020). Is organic agriculture in line with the EU-Nitrate directive? On-farm nitrate leaching from organic and conventional arable crop rotations. Agric. Ecosyst. Environ, 298, 106964. DOI: 10.1016/j.agee.2020.106964. Open DOISearch in Google Scholar

Blicher-Mathiesen, G., Andersen, H.E., Cartensen, J., Bøtgesen, Ch.D., Hasler, B. & Windolf J. (2014). Mapping of nitrogen risk areas. Agric. Ecosyst. Environ, 195, 149‒160. DOI: 10.1016/j.agee.2014.06.004. Open DOISearch in Google Scholar

Bowles, T.M., Atallah, S.S., Campbell, E.E., Gaudin, A.C.M., Wieder, W.R. & Grandy A.S. (2018). Addressing agricultural nitrogen loses in a changing climate. Nature Sustainability, 1, 399‒408. DOI: 10.1038/s41893-018-0106-0. Open DOISearch in Google Scholar

Buczko, U. & Kuchenbuch R.O. (2010). Environmental indicators to assess the risk of diffuse nitrogen losses from agriculture. Environ. Manag., 45, 1201‒1222. DOI: 10.1007/s00267-010-9448-8.20306042 Open DOISearch in Google Scholar

Bujnovský, R. & Koco Š. (2019). The load of agricultural land by nutrients in relation to diffuse water pollution in Slovakia - actual view. In From environmental goals towards drinking water quality. In The electronic Proceedings of the International Conference Water Resources Protection 2019 (pp. 38‒43). Banská Bystrica: Slovak Environmental Agency. Search in Google Scholar

Bujnovský, R., Malík, P. & Švasta J. (2016). Evaluation of the risk of the diffuse pollution of groundwater by nitrogen substances from agricultural land use as background for allocation of effective measures. Ekológia (Bratislava), 35, 66‒77. DOI: 10.1515/eko-2016-0005. Open DOISearch in Google Scholar

Cameira, M. R., Rolim, J., Valente, F., Faro, A., Dragosits, U. & Cordovil C.M.D.S. (2019). Spatial distribution and uncertainties of nitrogen budgets for agriculture in the Tagus river basin in Portugal – Implications for effectiveness of mitigation measures. Land Use Policy, 84, 278‒293. DOI: 10.1016/j.landusepol.2019.02.028. Open DOISearch in Google Scholar

Cameira, M D., Rolim, J., Valente, F., Mesquita, M. & Dragosits Cordovil C.M. (2021). Translating the agricultural N surplus hazard into groundwater pollution risk: Implications for effectiveness of mitigation measures in nitrate vulnerable zones. Agric. Ecosyst. Environ, 306, 10724. DOI: 10.1016/j.agee.2020.107204. Open DOISearch in Google Scholar

Capri, E., Civita, M., Corniello, A., Cusimano, G., De Maio, M., Ducci, D., Fait, G., Fiorucci, A., Hauser, S., Pisciotta, A., Pranzini, G., Trevisan, M., Delgado Huertas, A., Ferrari, F., Frullini, R., Nisi, B., Offi, M., Vaselli, O. & Vassallo M. (2009). Assessment of nitrate contamination risk: The Italian experience. Journal of Geochemical Exploration, 102, 71‒86. DOI: 10.1016/j.gexplo.2009.02.006. Open DOISearch in Google Scholar

Cherry, K.A., Shepherd, M., Withers, P.J.A. & Mooney S.J. (2008). Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: A review of methods. Sci. Total Environ., 406, 1‒23. DOI: 10.1016/j.scitotenv.2008.07.015.18771793 Open DOISearch in Google Scholar

Cibulka, R., Rajczyková, E., Bujnovský, R., Májovská, A., Ľuptáková, A., Paľušová, Z., Grófová, R., Gergeľová, Z., Halásová, M., Píš, V., Kališ, M. & Gáborík Š. (2020). Report on the state of implementation of Council Directive 91/676/EEC concerning the protection of water against pollution caused by nitrates from agricultural resources in the Slovak Republic (in Slovak). Bratislava: Ministry of Environment & Ministry of Agriculture and Rural Development. https://cdr.eionet.europa.eu/sk/eu/nid/. Search in Google Scholar

De Notaris, Ch., Rassmussen, J., Sørensen, P. & Olesen J.E. (2018). Nitrogen leaching: A crop rotation perspective on the effect of N surplus, field management and use of catch crops. Agric. Ecosyst. Environ., 255, 1‒11. DOI: 10.1016/j.agee.2017.12.009. Open DOISearch in Google Scholar

De Vries, W., Schulte-Uebbing, L., Kros, H., Voogd, J.C. & Louwagie G. (2021). Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Sci. Total. Environ., 786, 147283. DOI: 10.1016/j.scitotenv.2021.147283.33958210 Open DOISearch in Google Scholar

European Commission (2020a). Communication from the Commisssion to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – EU Biodiversity Strategy for 2030. Bringing nature back into our lives. COM(2020) 380 final. Brussels: European Commission. Search in Google Scholar

European Commission (2020b). Communication from the Commisssion to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system. COM(2020) 381 final. Brussels: European Commission. Search in Google Scholar

European Commission (2021). Report from the Commission to the Council and the European Parliament on the implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports for the period 2016–2019. COM(2021) 1000 final. Brussels: European Commission. Search in Google Scholar

European Environmental Agency (2016). EMEP/EEA air pollutant emission inventory guidebook 2016. Technical guidance to prepare national emission inventories. EEA technical report No. 21/2016. Luxembourg: Publications Office of the European Union. Search in Google Scholar

European Environment Agency (2021). Water and agriculture: towards sustainable solutions. EEA Report No. 17/2020. Copenhagen: European Environment Agency. Search in Google Scholar

European Commission (2022). Eurostat database. https://ec.europa.eu/eurostat/data/database. Search in Google Scholar

Eurostat (2013). Nutrient budgets – Methodology and handbook, Version 1.02. Luxembourg: Eurostat and OECD. Search in Google Scholar

Fan, J., Hao, M.D. & Malhi S.S. (2010). Accumulation of nitrate N in the soil profile and its implications for the environment under dryland agriculture in northern China: A review. Can. J. Soil Sci., 90, 423‒429. DOI: 10.4141/CJSS09105. Open DOISearch in Google Scholar

Haberle, J., Kusá, H., Svoboda, P. & Klír J. (2009). The changes of soil mineral nitrogen on farms between autumn and spring and modelled with simple leaching equation. Soil and Water Research, 4, 159‒167. DOI: 10.17221/7/2009-SWR. Open DOISearch in Google Scholar

Hansen, B., Thorling, L., Schullehner, J., Termansen, M. & Dalgaard T. (2017). Groundwater nitrate response to sustainable nitrogen management. Scientific Reports, 7, 8566. DOI: 10.1038/s41598-017-07147-2.556124728819258 Open DOISearch in Google Scholar

Heldstab, J., Schäppi, B., Reutimann, J., Bach, M., Häußermann, U., Knoll, L., Klement, L., Breuer, L., Fuchs, S. & Weber T. (2020). Integrated Nitrogen Indicator, National Nitrogen Target and the Current Situation in Germany (DESTINO Report 1. Dessau-Roßlau, Germany: Umweltbundesamt. Search in Google Scholar

Hérivaux, C., Orban, Ph. & Brouyère S. (2013). It is worth protecting ground-water from diffuse pollution with agri-environmental schemes? A hydro-economic modeling approach. J. Environ. Manage., 128, 62‒74. DOI: 10.1016/j.jenvman.2013.04.058.23722175 Open DOISearch in Google Scholar

Højberg, A.L., Hansen, A.L., Wachniew, P., Żurek, A.J., Virtanen, S., Arustiene, J., Strömqvist, J., Rankinen, K. & Refsgaard J.Ch. (2017). Review and assessment of nitrate reduction in groundwater in the Baltic Sea Basin. Journal of Hydrology: Regional Studies, 12, 50‒68. DOI: 10.1016/j.ejrh.2017.04.001. Open DOISearch in Google Scholar

ICPDR (2021a). Guidance document on sustainable agriculture in the Danube river basin. Vienna: International Commission for the Protection of the Danube River. Search in Google Scholar

ICPDR (2021b). Danube river basin management plan. Update 2021. Vienna: International Commission for the Protection of the Danube River. Search in Google Scholar

Klages, S., Aue, Ch., Reiter, K., Heidecke, C. & Osterburg B. (2022). Catch crops in Lower Saxony – more than 30 years of action against water pollution with nitrates: All in vain? Agriculture, 12, 447. DOI: 10.3390/agriculture12040447. Open DOISearch in Google Scholar

Klages, S., Heidecke, C., Osterburg, B., Bailey, J., Calciu, I., Casey, C., Dalgaard, T., Frick, H., Glavan, M., D´Haene, K., Hofman, G., Leitão, I.A., Surdyk, N., Verloop, K. & Velthof G. (2020). Nitrogen surplus - a unified indicator for water pollution in Europe? Water, 12, 1197. DOI: 10.3390/w12041197. Open DOISearch in Google Scholar

Knoll, L., Breuer, L. & Bach M. (2019). Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Sci. Total Environ., 668, 1317‒1327. DOI: 10.1016/j.scitotenv.2019.03.045. Open DOISearch in Google Scholar

Knoll, L., Breuer, L. & Bach M. (2020a). Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning. Environmental Research Letters, 15, 064004. DOI: 10.1088/1748-9326/ab7d5c. Open DOISearch in Google Scholar

Knoll, L., Häussermann, U., Breuer, L. & Bach M. (2020b). Spatial distribution of integrated nitrate reduction across the unsaturated zone and the groundwater body in Germany. Water, 12, 2456. DOI: 10.3390/w12092456. Open DOISearch in Google Scholar

Kuhr, P., Haider, J., Kreins, P., Kunkel, R., Tetzlaff, B., Vereecken, H. & Wend-land F. (2013). Model based assessment of nitrate pollution of water resources on a federal state level for the dimensioning of agro-environmental reduction strategies. The North Rhine-Westphalia (Germany) case study. Water Resources Management, 27, 885‒909. DOI: 10.1007/s11269-012-0221-z. Open DOISearch in Google Scholar

Kumar, R., Hesse, F., Rao, P.S.C., Musolff, A., Jawitz, J.W., Sarrazin, F., Samaniego, L., Fleckenstein, J.H., Rakovec, O., Thober, S. & Attinger S. (2020). Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe. Nature Communications, 11, 6302. DOI: 10.1038/s41467-020-19955-8. Open DOISearch in Google Scholar

Kunkel, R., Herrmann, F., Kape, H.-E., Keller, L., Koch, F., Tetzlaff, B. & Wendland F. (2017). Simulation of terrestrial nitrogen fluxes in Mecklenburg-Vorpomern and scenario analyses how to reach N-quality targets for groundwater and coastal waters. Environmental Earth Sciences, 76, 146. DOI: 10.1007/s12665-017-6437-8. Open DOISearch in Google Scholar

Kunkel, R., Kreins, P., Tetzlaff, B. & Wendland F. (2010). Forecasting the effects of EU policy measures on the nitrate pollution of groundwater and surface waters. J. Environ. Sci., 22, 872‒877. DOI: 10.1016/S1001-0742(09)60191-1. Open DOISearch in Google Scholar

Kunkel, R. & Wendland F. (2006). Diffuse nitrate inputs into the ground and surface waters of the Rhine and Ems (in German). Schriften des Forschungszentrum Jülich, Reihe Umwelt, Band 62, Jülich: Germany. Search in Google Scholar

Kühling, I., Beiküfner, M., Vergara, M. & Trautz D. (2021). Effect of adapted N-fertilisation strategies on nitrate leaching and yield performance of arable crops in North-Western Germany. Agronomy, 11, 64. DOI: 10.3390/agronomy11010064. Open DOISearch in Google Scholar

Laurent, F. & Ruelland D. (2011). Assessing impacts of alternative land use and agricultural practices on nitrate pollution at the catchment scale. J. Hydrol., 409, 440‒450. DOI: 10.1016/j.jhydrol.2011.08.041. Open DOISearch in Google Scholar

Lawniczak, A.E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A. & Kanas K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ. Monit. Assess., 188, 172. DOI: 10.1007/s10661-016-5167-9.475760726887311 Open DOISearch in Google Scholar

Mas-Pla, J. & Menció A. (2019). Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia). Environmental Science and Pollution Research, 26, 2184‒2202. DOI: 10.1007/s11356-018-1859-8.633870129644604 Open DOISearch in Google Scholar

Mititelu-Ionuș, O., Simulescu, D. & Popescu S.M. (2019). Environmental assessment of agricultural activities and groundwater nitrate pollution susceptibility: a regional case study (Southwestern Romania). Environ. Monit. Assess., 191, 501. DOI: 10.1007/s10661-019-7648-0.31327079 Open DOISearch in Google Scholar

Musacchio, A., Re, V., Mas-Pla, J. & Sacchi E. (2020). EU Nitrates Directive, from theory to practice: Environmental effectiveness and influence of regional governance on its performance. Ambio, 49, 504‒516. DOI: 10.1007/s13280-019-01197-8.696504831115872 Open DOISearch in Google Scholar

Orellana-Macías, J.M., Merchán, D. & Causapé J. (2020). Evolution and assessment of a nitrate vulnerable zone over 20 years: Gallocanta groundwater body (Spain). Hydrogeology Journal, 28, 2207-2221. DOI: 10.1007/s10040-020-02184-0. Open DOISearch in Google Scholar

Orellana-Macías, J.M., Perles Roselló, M.J. & Cauasapé J. (2021). A methodology for assessing groundwater pollution hazard by nitrates from agricultural sources: Application to the Gallocanta groundwater basin (Spain). Sustainability, 13, 6321. DOI: 10.3390/su13116321. Open DOISearch in Google Scholar

Pulighe, G., Vanino, S., Lupia, F. & Altobelli F. (2014). Spatialized agricultural nitrogen balance of Veneto region, Northern Italy: Sources identification, assessment and policy relevance. Global Nest Journal, 16, 293‒305. DOI: 10.30955/gnj.001213. Open DOISearch in Google Scholar

Sapek, A. (2005). Agricultural activities as a source of nitrates in groundwater. In L. Razowska-Jaworek & A. Sadurski (Eds.), Nitrates in groundwater (pp. 3‒13). London: CRC Press. DOI: 10.1201/9781482298352. Open DOISearch in Google Scholar

Serra, J., Cordovil, C. M., Cruz, S., Cameira, M.R. & Hutchings N.J. (2019). Challenges and solutions in identifying agricultural pollution hotspots using gross nitrogen balances. Agric. Ecosyst. Environ., 283, 106568. DOI: 10.1016/j.agee.2019.106568. Open DOISearch in Google Scholar

Sieling, K. & Kage H. (2006). N balance as an indicator of N leaching in an oil-seed rape - winter wheat - winter barley rotation. Agric. Ecosyst. Environ., 115, 261‒269. DOI: 10.1016/j.agee.2006.01.011. Open DOISearch in Google Scholar

Stark, Ch.H. & Richards K.G. (2008). The continuing challenge of nitrogen loss to the environment: Environmental consequences and mitigation strategies. Dynamic Soil, Dynamic Plant, 2, 41‒55. Search in Google Scholar

Stuart, M.E., Ward, R.S., Ascott, M. & Gart A.J. (2016). Regulatory practice and transport modelling for nitrate pollution in groundwater. Keyworth: British Geological Survey. Search in Google Scholar

Teixeira, E.I., Johnstone, P., Chakwizira, E., de Ruiter, J., Malcolm, B., Shaw, N., Zyslowski, R., Khaembah, E., Sharp, J., Meenken, E., Fraser, P., Thomas, S., Brown, H. & Curtin D. (2016). Sources of variability in the effectiveness of winter cover crops for mitigating N leaching. Agric. Ecosyst. Environ., 220, 226‒235. DOI: 10.1016/j.agee.2016.01.019. Open DOISearch in Google Scholar

van Grinsven, H.J.M., ten Berge, H.F.M., Dalgaard, T., Fraters, B., Durand, P., Hart, A., Hofman, G., Jacobsen, B.H., Lalor, S.T.J., Lesschen, J.P., Osterburg, B., Richards, K.G., Techen, A.-K., Vertès, F., Webb, J. & Willems W.J. (2012). Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive: a benchmark study. Biogeosciences, 9, 5143‒5160. DOI: 10.5194/bg-9-5143-2012. Open DOISearch in Google Scholar

Vero, S.W., Basu, N.B., Van Meter, K., Richards, K.G., Mellander, P.E., Healy, M.G. & Fenton O. (2018). Review: the environmental status and implications of the nitrate time lag in Europe and North America. Hydrogeology Journal, 26, 7‒22. DOI: 10.1007/s10040-017-1650-9. Open DOISearch in Google Scholar

Wang, L., Butcher, A.S., Stuart, M.E., Goody, D.C. & Bloomfield J.P. (2013). The nitrate time bombs - a numerical way to investigate nitrate storage and lag time in the unsaturated zone. Environ. Geochem. Health, 35, 667‒681. DOI: 10.1007/s10653-013-9550-9. Open DOISearch in Google Scholar

Wendland, F., Bergmann, S., Eisele, M., Gömann, H., Herrmann, F., Kreins, P. & Kunkel R. (2020). Model-based analysis of nitrate concentration in the leachate – the North Rhine-Westfalia case study, Germany. Water, 12, 550. DOI: 10.3390/w12020550. Open DOISearch in Google Scholar

Wienhaus, S., Höper, H., Eisele, M., Meesenburg, H. & Schäfer W. (2008). Use of pedological and hydrogeological information for designating target areas for groundwater protection - Results of a model project (NO-LIMP) for the implementation of the EC - Water Framework Directive. GeoBerichte 9, Landesamt für Bergbau, Energie und Geologie: Hannover, Germany. Search in Google Scholar

Wolters, T., Cremer, N., Eisele, M., Herrmann, F., Kreins, P., Kunkel, R. & Wendland F. (2021). Checking the plausibility of modelled nitrate concentrations in the leachate on federal state scale in Germany. Water, 13, 226. DOI: 10.3390/w13020226. Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo