1. bookVolume 2021 (2021): Issue 1 (January 2021)
Journal Details
License
Format
Journal
eISSN
2544-9990
First Published
30 May 2018
Publication timeframe
1 time per year
Languages
English
access type Open Access

Popoviciu’s type inequalities for h-MN-convex functions

Published Online: 04 Dec 2021
Volume & Issue: Volume 2021 (2021) - Issue 1 (January 2021)
Page range: 48 - 89
Received: 18 Mar 2021
Accepted: 21 Nov 2021
Journal Details
License
Format
Journal
eISSN
2544-9990
First Published
30 May 2018
Publication timeframe
1 time per year
Languages
English
Abstract

In this work, Popoviciu type inequalities for h-MN-convex functions are proved. Some direct examples are pointed out.

Keywords

MSC 2010

[1] M.W. Alomari, Some properties of h-MN-convexity and Jensen’s type inequalities, Journal of Interdisciplinary Mathematics 22(8) (2019), 1349–1395.10.1080/09720502.2019.1698402 Search in Google Scholar

[2] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007), 1294–1308.10.1016/j.jmaa.2007.02.016 Search in Google Scholar

[3] M. Bencze, C.P. Niculescu and F. Popovici, Popoviciu’s inequality for functions of several variables, J. Math. Anal. Appl. 365 (2010), 399–409.10.1016/j.jmaa.2009.10.069 Search in Google Scholar

[4] W.W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funk-tionen in topologischen linearen Räumen, Publ. Inst. Math. 23 (1978), 13–20. Search in Google Scholar

[5] W. W. Breckner and G. Orban, Hölder-continuity of certain generalized convex functions, Optimization 28 (1991), 201–209.10.1080/02331939408843915 Search in Google Scholar

[6] W. W. Breckner, Rational s-convexity, a generalized Jensen-convexity. Cluj-Napoca: Cluj University Press, 2011. Search in Google Scholar

[7] S.S. Dragomir, J. Pečarić and L.E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995) 335–341. Search in Google Scholar

[8] W. Fechner, Hlawka’s functional inequality, Aequat. Math. 87 (2014), 71–87.10.1007/s00010-012-0178-2 Search in Google Scholar

[9] D. Grinberg, Generalizations of Popoviciu’s inequality, (2008), arXiv:0803.2958v1. Search in Google Scholar

[10] E.K. Godunova and V.I. Levin, Neravenstva dlja funkcii širokogo klassa, soderžaščego vypuklye, monotonnye i nekotorye drugie vidy funkcii, Vycislitel. Mat. i. Mat. Fiz. Mezvuzov. Sb. Nauic. Trudov, MGPI, Moskva, 1985, 138–142. Search in Google Scholar

[11] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100–111.10.1007/BF01837981 Search in Google Scholar

[12] J. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30 (1906), 175–193.10.1007/BF02418571 Search in Google Scholar

[13] D.S. Mitrinović and J. Pečarić, Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Can. 12 (1990), 33–36. Search in Google Scholar

[14] D.S. Mitrinović, J. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.10.1007/978-94-017-1043-5 Search in Google Scholar

[15] C.P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3(2) (2000), 155–167.10.7153/mia-03-19 Search in Google Scholar

[16] C.P. Niculescu, L.E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books Math., vol. 23, Springer-Verlag, New York, 2006.10.1007/0-387-31077-0 Search in Google Scholar

[17] C.P. Niculescu and F. Popoviciu, A refinement of Popoviciu’s inequality, Bull. Math. Soc. Sci. Math. Roumanie Tome 49(3) (2006), 285–290. Search in Google Scholar

[18] C.E.M. Pearce and A.M. Rubinov, P -functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Appl. 240 (1999), 92–104.10.1006/jmaa.1999.6593 Search in Google Scholar

[19] F. Popovici and C.-I. Spiridon, The Jensen inequality for (M, N)-convex functions, Annals of the University of Craiova, Mathematics and Computer Science Series 38(4) (2011), 63–66. Search in Google Scholar

[20] T. Popoviciu, Sur certaines inégalités qui caractérisent les fonctions convexes, Analele Stiintifice 11 (1965), 155–164. Search in Google Scholar

[21] M. Pycia, A direct proof of the s-Hölder continuity of Breckner s-convex functions, Aequationes Math. 61(1-2) (2001), 128–130.10.1007/s000100050165 Search in Google Scholar

[22] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973. Search in Google Scholar

[23] D. M. Smiley and M. F. Smiley, The polygonal inequalities, Amer. Math. Mon. 71(7) (1964), 755–760.10.1080/00029890.1964.11992316 Search in Google Scholar

[24] S.-E. Takahasi, Y. Takahashi and A. Honda, A new interpretation of Djoković’s inequality, J. Nonlinear Convex Anal. 1(3) (2000), 343–350. Search in Google Scholar

[25] S.-E. Takahasi, Y. Takahashi, S. Miyajima and H. Takagi, Convex sets and inequalities, J. Inequal. Appl. 2 (205), 107–117. Search in Google Scholar

[26] S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303–311.10.1016/j.jmaa.2006.02.086 Search in Google Scholar

[27] P.M. Vasić and L.R. Stanković, Some inequalities for convex functions, Math. Balkanica 6 (1976), 281–288. Search in Google Scholar

[28] R. Whitty, A generalised Hlawka inequality by D. Smiley & M. Smiley, Theorem of the day, https://www.theoremoftheday.org/Analysis/Hlawka/TotDHlawka.pdf. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo