1. bookVolume 2020 (2020): Issue 1 (January 2020)
Journal Details
License
Format
Journal
eISSN
2544-9990
First Published
30 May 2018
Publication timeframe
1 time per year
Languages
English
access type Open Access

New extensions of associated Laguerre polynomials

Published Online: 31 Dec 2020
Volume & Issue: Volume 2020 (2020) - Issue 1 (January 2020)
Page range: 81 - 97
Received: 09 May 2020
Accepted: 25 Nov 2020
Journal Details
License
Format
Journal
eISSN
2544-9990
First Published
30 May 2018
Publication timeframe
1 time per year
Languages
English
Abstract

The main object of this paper is to present new extensions of associated Laguerre polynomials. Some integral representations, recurrence relations, generating functions and summation formulae are obtained for these new extended Laguerre polynomials.

Keywords

MSC 2010

[1] P. Agarwal, J. Choi and S. Jain, Extended hypergeometric functions of two and three variables, Commun. Korean Math. Soc.30(4) (2015) 403-414.10.4134/CKMS.2015.30.4.403Search in Google Scholar

[2] P. Appell and J. Kamp,é de Fériet, Fonctions hypergéométriques et hypersphériques: Polynômes d’ Hermite, Gauthier-Villars, Paris, 1926.Search in Google Scholar

[3] D. Babusci, G. Dattoli, K. Gorska and K. A. Penson, Lacunary generating functions for Laguerre polynomials, Sém. Lothar. Combin.76 (2017) Article B76b, 1–19.Search in Google Scholar

[4] M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math.78 (1997) 19-32.10.1016/S0377-0427(96)00102-1Search in Google Scholar

[5] M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput.159 (2004) 589-602.Search in Google Scholar

[6] G. Dattoli, Generalized polynomials, operational identities and their applications, J. Comput. Appl. Math.118(1) (2000) 111–123.10.1016/S0377-0427(00)00283-1Search in Google Scholar

[7] G. Dattoli, Bilateral generating functions and operational methods, J. Math. Anal. Appl.269 (2002) 716-725.10.1016/S0022-247X(02)00047-1Search in Google Scholar

[8] G. Dattoli and A. Torre, Exponential operators, quasi-monomials and generalized polynomials, Radiat. Phys. Chem.57(1) (2000) 21–26.10.1016/S0969-806X(99)00346-1Search in Google Scholar

[9] K. S. Dhounsi and Yasmeen, General study on Laguerre polynomials of two variable, Int. J. Comput. Appl. Math.12(3) (2017) 877–885.Search in Google Scholar

[10] S. Khan and G. Yasmin, On generating function for the two variables modified Laguerre polynomials, Bull. Math. Soc. Sci. Math Roumanie Tome45(93) (2002) 29-37.Search in Google Scholar

[11] S. Khan and G. Yasmin, Lie–Theoretic generating relations of two variables Laguerre polynomials, Rep. Math. Phys.51 (2003) 1–7.10.1016/S0034-4877(03)80001-0Search in Google Scholar

[12] M. A. Özarslan and E. Özergin, Some generating relations for extended hypergeo-metric functions via generalized fractional derivative operator, Math. Comput. Modelling52 (2010) 1825-1833.10.1016/j.mcm.2010.07.011Search in Google Scholar

[13] M. A. Özarslan and B. Yilmaz, The extended Mittag-Leffler function and its properties, J. Inequ. Appl.85(1) (2014) Article number: 85.10.1186/1029-242X-2014-85Search in Google Scholar

[14] E. Özergin, M. A. Özarslan and A. Altin, Extension of gamma, beta and hypergeo-metric functions, J. Comput. Appl. Math.235 (2011) 4601-4610.10.1016/j.cam.2010.04.019Search in Google Scholar

[15] R. K. Parmar, J. Choi and S. D. Purohit, Further generalization of the extended Hurwitz-Lerch Zeta functions, Bol. Soc. Paran. Mat.37(1) (2019) 177-190.10.5269/bspm.v37i1.31842Search in Google Scholar

[16] E. D. Rainville, Special Functions, Macmillan, New York, 1960.Search in Google Scholar

[17] D. K. Singh, On extended hypergeometric function, Thai J. Math.15(2) (2017) 483-490.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo