1. bookVolume 2019 (2019): Issue 1 (January 2019)
Journal Details
License
Format
Journal
eISSN
2544-9990
First Published
30 May 2018
Publication timeframe
1 time per year
Languages
English
Open Access

A note on h-convex functions

Published Online: 17 Dec 2019
Volume & Issue: Volume 2019 (2019) - Issue 1 (January 2019)
Page range: 55 - 67
Received: 06 Feb 2019
Accepted: 04 Aug 2019
Journal Details
License
Format
Journal
eISSN
2544-9990
First Published
30 May 2018
Publication timeframe
1 time per year
Languages
English
Abstract

In this work, we discuss the continuity of h-convex functions by introducing the concepts of h-convex curves (h-cord). Geometric interpretation of h-convexity is given. The fact that for a h-continuous function f, is being h-convex if and only if is h-midconvex is proved. Generally, we prove that if f is h-convex then f is h-continuous. A discussion regarding derivative characterization of h-convexity is also proposed.

Keywords

MSC 2010

[1] M. W. Alomari, M. Darus, S. S. Dragomir and U. Kirmaci, On fractional differentiable s-convex functions, Jordan J. Math and Stat.3(1) (2010), 33–42.Search in Google Scholar

[2] M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Compute. Math. Applica.58(9) (2009), 1869–1877.10.1016/j.camwa.2009.07.073Search in Google Scholar

[3] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funk-tionen in topologischen linearen Räumen, Publ. Inst. Math.23 (1978), 13–20 (in German).Search in Google Scholar

[4] W. W. Breckner and G. Orban, Continuity Properties of Rationally s-convex Mappings with Values in an Ordered Topological Linear Space, Babes-Bolyai University, Cluj-Napocoi, 1978.Search in Google Scholar

[5] W. W. Breckner, Hölder-continuity of certain generalized convex functions, Optimization28 (1994), 201–209.10.1080/02331939408843915Search in Google Scholar

[6] W. W. Breckner, Rational s-convexity, a Generalized Jensen-convexity, Cluj University Press, Cluj-Napoca, 2011.Search in Google Scholar

[7] S. Cobzas and I. Muntean, Continuous and locally Lipschitz convex functions, Mathematica Rev. d’Anal. Numér. et de Théorie de I’Approx., Ser. Mathematica 18(41) (1976), 41–51.Search in Google Scholar

[8] S. Cobzas, On the Lipschitz properties of continuous convex functions, Mathematlca Ret. d’Anal. Numér. et de Théorie de I’Approx., Ser. Mathemarica 21(44) (1979), 123-125.Search in Google Scholar

[9] M. V. Cortez, Relative strongly h-convex functions and integral inequalities, Appl. Math. Inf. Sci. Lett.4(2) (2016), 39–45.10.18576/amisl/040201Open DOISearch in Google Scholar

[10] S. S. Dragomir, Inequalities of Jensen type for h-convex functions on linear spaces, Math. Moravica19(1) (2015), 107–121.10.5937/MatMor1501107SSearch in Google Scholar

[11] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones J. Math.34(4), (2015) 323–341.10.4067/S0716-09172015000400002Search in Google Scholar

[12] S. S. Dragomir, J. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math.21 (1995), 335–341.Search in Google Scholar

[13] E. K. Godunova and V. I. Levin, Neravenstva dlja funkcii širokogo klassa, soderžaščego vypuklye, monotonnye i nekotorye drugie vidy funkcii, Vyčislitel. Mat. i. Mat. Fiz. Mežvuzov. Sb. Nauk. Trudov, MGPI, Moskva, 1985, pp. 138–142 (in Russian).Search in Google Scholar

[14] A. Házy, Bernstein-doetsch type results for h-convex functions, Math. Inequal. Appl.14(3) (2011), 499–508.10.7153/mia-14-42Search in Google Scholar

[15] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math.48 (1994), 100–111.10.1007/BF01837981Search in Google Scholar

[16] M. Matłoka, On Hadamard’s inequality for h-convex function on a disk, Appl. Math. Comp.235 (2014), 118–123.10.1016/j.amc.2014.02.085Search in Google Scholar

[17] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Springer-Verlag, Berlin Heidelberg, 1983.10.1007/BFb0072210Search in Google Scholar

[18] W. Matuszewska and W. Orlicz, A note on the theory of s-normed spaces of -integrable functions, Studia Math.21 (1981), 107–115.10.4064/sm-21-1-107-115Search in Google Scholar

[19] D. S. Mitrinović and J. Pečarić, Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Can.12 (1990), 33–36.Search in Google Scholar

[20] D.S. Mitrinović, J. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.10.1007/978-94-017-1043-5Search in Google Scholar

[21] C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books Math., Vol. 23, Springer-Verlag, New York, 2006.10.1007/0-387-31077-0Open DOISearch in Google Scholar

[22] A. Olbryś, Representation theorems for h-convexity, J. Math. Anal. Appl426(2) (2015), 986–994.10.1016/j.jmaa.2015.01.070Search in Google Scholar

[23] C. E. M. Pearce and A. M. Rubinov, P -functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Appl.240 (1999), 92–104.10.1006/jmaa.1999.6593Search in Google Scholar

[24] M. Pycia, A direct proof of the s-Hölder continuity of Breckner s-convex functions, Aequationes Math.61(1-2) (2001), 128–130.10.1007/s000100050165Search in Google Scholar

[25] M. R. Pinheiro, Convexity Secrets, Trafford Publishing, 2008.Search in Google Scholar

[26] M. R. Pinheiro, Exploring the concept of s-convexity, Aequationes Mathematicae74(3) (2007), 201–209.10.1007/s00010-007-2891-9Search in Google Scholar

[27] M. R. Pinheiro, Hudzik and Maligranda’s s-convexity as a local approximation to convex functions, Preprint, 2008.Search in Google Scholar

[28] M. R. Pinheiro, Hudzik and Maligranda’s s-convexity as a local approximation to convex functions II, Preprint, 2008.Search in Google Scholar

[29] M. R. Pinheiro, Hudzik and Maligranda’s s-convexity as a local approximation to convex functions III, Preprint, 2008.Search in Google Scholar

[30] M. R. Pinheiro, H–H Inequality for s-Convex Functions, Inter. J. P. Appl. Math.44(4) (2008), 563–579.Search in Google Scholar

[31] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.Search in Google Scholar

[32] S. Rolewicz, Metric Linear Spaces, 2nd ed., PWN, Warsaw, 1984.Search in Google Scholar

[33] T. Trif, Hölder continuity of generalized convex set-valued mappings, J. Math. Anal. Appl.255 (2001), 44–57.10.1006/jmaa.2000.7150Search in Google Scholar

[34] K.-L. Tseng, G.-S. Yang and S. S. Dragomir, On quasi convex functions and Hadamard’s inequality, Demonsrtatio MathematicsXLI(2) (2008), 323–335.10.1515/dema-2008-0210Search in Google Scholar

[35] S. Varošanec, On h-convexity, J. Math. Anal. Appl.326 (2007), 303–311.10.1016/j.jmaa.2006.02.086Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo