1. bookVolume 28 (2020): Issue 2 (September 2020)
    Special Issue: 2nd International Workshop on Nonassociative Algebras, Porto, April 29–May 3 2019
Journal Details
License
Format
Journal
First Published
16 Jun 2010
Publication timeframe
2 times per year
Languages
English
Copyright
© 2020 Sciendo

Reductive homogeneous spaces and nonassociative algebras

Published Online: 11 Oct 2020
Page range: 199 - 229
Received: 19 Jul 2019
Accepted: 05 Sep 2019
Journal Details
License
Format
Journal
First Published
16 Jun 2010
Publication timeframe
2 times per year
Languages
English
Copyright
© 2020 Sciendo

The purpose of these survey notes is to give a presentation of a classical theorem of Nomizu [21] that relates the invariant affine connections on reductive homogeneous spaces and nonassociative algebras.

Keywords

MSC 2010

[1] D.V. Alekseevskij, R.V. Gamkrelidze, V.V. Lychagin, A.M. Vinogradov: Geometry I: Basic ideas and concepts of differential geometry. Springer, Berlin (1991). Encyclopaedia Math. Sci. 28.Search in Google Scholar

[2] P. Benito, C. Draper, A. Elduque: On some algebras related to simple Lie triple systems. Journal of Algebra 219 (1) (1999) 234–254.Search in Google Scholar

[3] P. Benito, C. Draper, A. Elduque: Lie-Yamaguti algebras related to g2. Journal of Pure and Applied Algebra 202 (1–3) (2005) 22–54.Search in Google Scholar

[4] P. Benito, A. Elduque, F. Martín-Herce: Irreducible Lie-Yamaguti algebras. Journal of Pure and Applied Algebra 213 (5) (2009) 795–808.Search in Google Scholar

[5] P. Benito, A. Elduque, F. Martín-Herce: Irreducible Lie-Yamaguti algebras of generic type. Journal of Pure and Applied Algebra 215 (2) (2011) 108–130.Search in Google Scholar

[6] D. Burde: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Central European Journal of Mathematics 4 (3) (2006) 323–357.Search in Google Scholar

[7] L. Conlon: Differentiable manifolds, Second edition. Birkhäuser, Boston, MA (2001).Search in Google Scholar

[8] C. Draper, A. Garvín, F.J. Palomo: Invariant affine connections on odd-dimensional spheres. Annals of Global Analysis and Geometry 49 (3) (2016) 213–251.Search in Google Scholar

[9] A. Elduque, M. Kochetov: Gradings on simple Lie algebras. American Mathematical Soc. (2013).Search in Google Scholar

[10] A. Elduque, H.C. Myung: Color algebras and affine connections on S6. Journal of Algebra 149 (1) (1992) 234–261.Search in Google Scholar

[11] A. Elduque, H.C. Myung: The reductive pair (B3, G2) and affine connections on S7. Journal of Pure and Applied Algebra 86 (2) (1993) 155–171.Search in Google Scholar

[12] A. Elduque, H.C. Myung: The reductive pair (B4, B3) and affine connections on S15. Journal of Algebra 227 (2) (2000) 504–531.Search in Google Scholar

[13] M.K. Kinyon, A. Weinstein: Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces. American Journal of Mathematics 123 (3) (2001) 525–550.Search in Google Scholar

[14] S. Kobayashi, K. Nomizu: Foundations of differential geometry I. Interscience Publishers, New York-London (1963).Search in Google Scholar

[15] S. Kobayashi, K. Nomizu: Foundations of differential geometry II. Interscience Publishers, New York-London-Sidney (1969).Search in Google Scholar

[16] H.T. Laquer: Invariant affine connections on Lie groups. Transactions of the American Mathematical Society 331 (2) (1992) 541–551.Search in Google Scholar

[17] H.T. Laquer: Invariant affine connections on symmetric spaces. Proceedings of the American Mathematical Society (1992) 447–454.Search in Google Scholar

[18] P.A. Medina: Flat left-invariant connections adapted to the automorphism structure of a Lie group. Journal of Differential Geometry 16 (3) (1981) 445–474.Search in Google Scholar

[19] H.C. Myung: Malcev-admissible algebras. Birkhäuser Boston, Inc., Boston, MA (1986). Progress in Mathematics, 64.Search in Google Scholar

[20] S. Nagai: The classification of naturally reductive homogeneous real hypersurfaces in complex projective space. Archiv der Mathematik 69 (6) (1997) 523–528.Search in Google Scholar

[21] K. Nomizu: Invariant affine connections on homogeneous spaces. American Journal of Mathematics 76 (1) (1954) 33–65.Search in Google Scholar

[22] A.A. Sagle: Jordan algebras and connections on homogeneous spaces. Transactions of the American Mathematical Society 187 (1974) 405–427.Search in Google Scholar

[23] E.B. Vinberg: Invariant linear connections in a homogeneous space. Trudy Moskovskogo Matematicheskogo Obshchestva 9 (1960) 191–210.Search in Google Scholar

[24] H.C. Wang: On invariant connections over a principal fibre bundle. Nagoya Mathematical Journal 13 (1958) 1–19.Search in Google Scholar

[25] F.W. Warner: Foundations of differentiable manifolds and Lie groups. Springer-Verlag, New York-Berlin (1983). Corrected reprint of the 1971 edition. Graduate Texts in Mathematics 94.Search in Google Scholar

[26] K. Yamaguti: On the Lie triple system and its generalization. Journal of Science of the Hiroshima University, Series A (Mathematics, Physics, Chemistry) 21 (3) (1958) 155–160.Search in Google Scholar

Plan your remote conference with Sciendo