1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
First Published
16 Jun 2010
Publication timeframe
2 times per year
Languages
English
access type Open Access

A note on the volume of ∇-Einstein manifolds with skew-torsion

Published Online: 10 Aug 2020
Page range: -
Received: 02 Jul 2019
Accepted: 07 Jul 2019
Journal Details
License
Format
Journal
First Published
16 Jun 2010
Publication timeframe
2 times per year
Languages
English
Abstract

We study the volume of compact Riemannian manifolds which are Einstein with respect to a metric connection with (parallel) skew-torsion. We provide a result for the sign of the first variation of the volume in terms of the corresponding scalar curvature. This generalizes a result of M. Ville [15] related with the first variation of the volume on a compact Einstein manifold.

Keywords

MSC 2010

[1] I. Agricola, A.C. Ferreira: Einstein manifolds with skew torsion. Oxford Quart. J. (65) (2014) 717–741.Search in Google Scholar

[2] I. Agricola, Th. Friedrich: On the holonomy of connections with skew-symmetric torsion. Math. Ann. (328) (2004) 711–748.Search in Google Scholar

[3] I. Agricola, J. Becker-Bender, H. Kim: Twistorial eigenvalue estimates for generalized Dirac operators with torsion. Adv. Math. (243) (2013) 296–329.Search in Google Scholar

[4] B. Ammann, C. Bär: The Einstein-Hilbert action as a spectral action. Noncommutative Geometry and the Standard Model of Elementary Particle Physics (2002) 75–108.Search in Google Scholar

[5] A.L. Besse: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag (1987).Search in Google Scholar

[6] I. Chrysikos: Invariant connections with skew-torsion and r-Einstein manifolds. J. Lie Theory (26) (2016) 11–48.Search in Google Scholar

[7] I. Chrysikos: Killing and twistor spinors with torsion. Ann. Glob. Anal. Geom. (49) (2016) 105–141.Search in Google Scholar

[8] I. Chrysikos: A new 12{1 \over 2} -Ricci type formula on the spinor bundle and applications. Adv. Appl. Clifford Algebras (27) (2017) 3097–3127.Search in Google Scholar

[9] I. Chrysikos, C. O’Cadiz Gustad, H. Winther: Invariant connections and ∇-Einstein structures on isotropy irreducible spaces. J. Geom. Phys. (138) (2019) 257–284.Search in Google Scholar

[10] C.A. Draper, A. Garvin, F.J. Palomo: Invariant affine connections on odd dimensional spheres. Ann. Glob. Anal. Geom. (49) (2016) 213–251.Search in Google Scholar

[11] C.A. Draper, A. Garvin, F.J. Palomo: Einstein connections with skew-torsion on Berger spheres. J. Geom. Phys. (134) (2017) 133–141.Search in Google Scholar

[12] Th. Friedrich, S. Ivanov: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. (6) (1962) 64–94.Search in Google Scholar

[13] Th. Friedrich, E.C. Kim: The Einstein-Dirac equation on Riemannian spin manifolds. J. Geom. Phys. (33) (2000) 128–172.Search in Google Scholar

[14] W. Kühnel: Differential Geometry, Curves–Surfaces–Manifolds. Amer. Math. Soc. Student Math. Library (2002).Search in Google Scholar

[15] M. Ville: Sur le volume des variétés riemanniennes pincées. Bulletin de la S. M. F. (115) (1987) 127–139.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo