1. bookVolume 13 (2020): Issue 1 (September 2020)
Journal Details
License
Format
Journal
eISSN
2343-8908
First Published
30 Sep 2018
Publication timeframe
2 times per year
Languages
English
Open Access

A Review of Processing Methods and Classification Algorithm for EEG Signal

Published Online: 08 Oct 2020
Volume & Issue: Volume 13 (2020) - Issue 1 (September 2020)
Page range: 23 - 29
Journal Details
License
Format
Journal
eISSN
2343-8908
First Published
30 Sep 2018
Publication timeframe
2 times per year
Languages
English

[1] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain-computer interfaces, a review,” Sensors, vol. 12, pp. 1211-1279, 2012.Search in Google Scholar

[2] Michael X Cohen. Where Does EEG Come From and What Does It Mean? [J]. Trends in Neurosciences, 2017(40):208-218.10.1016/j.tins.2017.02.00428314445Search in Google Scholar

[3] Mohd Zaizu Ilyas, Puteh Saad & Muhammad Imran Ahmad. A Survey of Analysis and Classification of EEG Signals for Brain-Computer Interfaces[J]. 2015 2nd International Conference on Biomedical Engineering(ICoBE), 30-31 March 2015, Penang.10.1109/ICoBE.2015.7235129Search in Google Scholar

[4] Namita.R.Tambe, Ajitkumar Khachane. Mood Based E-learning using EEG[J]. 2nd International Conference on Computing, Communication, Control and Automation,12-13 AUG 2016.10.1109/ICCUBEA.2016.7860018Search in Google Scholar

[5] M. R. Lakshmi, D. T. V. Prasad, and D. V. C. Prakash, “Survey on EEG Signal Processing Methods,” International Journal of Advanced Research in Computer Science and Software Engineering, vol. 4, pp. 84-91, 2014.Search in Google Scholar

[6] Mohammed J. Alhaddad, “Common Average Reference (CAR) Improves P300 Speller,” International Journal of Engineering and Technology, vol. 2, pp. 451-489, 2012.Search in Google Scholar

[7] Tiejun Liu, Dezhong Yao.Removal of the ocular artifacts from EEG data using a cascaded Spatio-temporal processing[J]. Computer methods and programs in biomedicine, 83 (2006):95–103.10.1016/j.cmpb.2006.03.00916884816Search in Google Scholar

[8] Luis Alfredo Moctezuma, Alejandro A. Torres-García, et al.Subjects identification using EEG-recorded imagined speech[J]. Expert Systems With Applications,118 (2019):201–208.10.1016/j.eswa.2018.10.004Search in Google Scholar

[9] M. K. Ahirwal, A. Kumar, and G. K. Singh, “Adaptive filtering of EEG/ERP through Bounded Range Artificial Bee Colony (BR-ABC) algorithm,” Digital Signal Processing, vol. 25, pp. 164-172, 2//2014.10.1016/j.dsp.2013.10.019Search in Google Scholar

[10] G. Korats, S. Le Cam, R. Ranta, and M. Hamid, “Applying ICA in EEG: Choice of the Window Length and of the Decorrelation Method,” in Biomedical Engineering Systems and Technologies. vol. 357, J. Gabriel, J. Schier, S. Van Huffel, E. Conchon, C. Correia, A. Fred, et al., Eds., ed: Springer Berlin Heidelberg, 2013, pp. 269-286.Search in Google Scholar

[11] L. Velásquez-Martínez, A. M. Álvarez-Meza, and C. G. Castellanos- Domínguez, “Motor Imagery Classification for BCI Using Common Spatial Patterns and Feature Relevance Analysis,” in Natural and Artificial Computation in Engineering and Medical Applications. vol. 7931, J. Ferrández Vicente, J. Álvarez Sánchez, F. de la Paz López, and F. J. Toledo Moreo, Eds., ed: Springer Berlin Heidelberg, 2013, pp. 365-374.Search in Google Scholar

[12] D. J. McFarland, “The advantages of the surface Laplacian in braincomputer interface research,” International Journal of Psychophysiology, 2014.Search in Google Scholar

[13] Jun Lu, Dennis J. McFarland, Jonathan R. Wolpaw. Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces[J]. Journal of neural engineering,2013(10), p016002.10.1088/1741-2560/10/1/016002360234123220879Search in Google Scholar

[14] X. Yu, P. Chum, and K.-B. Sim, “Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system,” Optik - International Journal for Light and Electron Optics, vol. 125, pp. 1498-1502, 2//2014.Search in Google Scholar

[15] J. Suto, S. Oniga, Music Stimuli Recognition in Electroencephalogram Signal. Elektronika ir Elektrotechnika, 24(4), 2018, pp.68-71. http://dx.doi.org/10.5755/j01.eie.24.4.21482.10.5755/j01.eie.24.4.21482Search in Google Scholar

[16] Shayan Motamedi-Fakhr, Mohamed Moshrefi-Torbati, Martyn Hill, Catherine M. Hill, Paul R.White.Signal processing techniques applied to human sleep EEG signals-A review[J]. Biomedical Signal Processing and Control, 10 (2014):21–33.10.1016/j.bspc.2013.12.003Search in Google Scholar

[17] Chungsong Kim, Jinwei Sun and Dan Liu, “An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI “, Medical & Biological Engineering & Computing volume 56, pages1645–1658(2018)10.1007/s11517-017-1761-429497931Search in Google Scholar

[18] Sourav Kundu, Samit Ari.P300 Detection with Brain-Computer Interface Application using PCA and Ensemble of Weighted SVMs[J]. IETE Journal of Research, 2017.10.1080/03772063.2017.1355271Search in Google Scholar

[19] Dimigen, O., Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments, NeuroImage (2019), DOI: https://doi.org/10.1016/j.neuroimage.2019.11611710.1016/j.neuroimage.2019.11611731689537Search in Google Scholar

[20] V. Lawhern, W. D. Hairston, K. McDowell, M. Westerfield, and K. Robbins, “Detection and classification of subject-generated artifacts in EEG signals using autoregressive models,” Journal of Neuroscience Methods, vol. 208, pp. 181-189, 7/15/2012.10.1016/j.jneumeth.2012.05.01722634706Search in Google Scholar

[21] A. S. Al-Fahoum and A. A. Al-Fraihat, “Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time- Frequency Domains,” ISRN Neuroscience, vol. 2014, p. 7, 2014.Search in Google Scholar

[22] Md Fahim Ansari, Damodar Reddy Edla.Brain-Computer Interface for wheelchair control operations: An approach based on Fast Fourier Transform and On-Line Sequential Extreme Learning Machine[J]. Clinical Epidemiology and Global Health,2018.10.1016/j.cegh.2018.10.007Search in Google Scholar

[23] Mejdi Ben Dkhil, Ali Wali, and Adel M. Alimi.Drowsy Driver Detection by EEG Analysis Using Fast Fourier Transform[J].Electrical Engineering and Systems Science,2018.Search in Google Scholar

[24] Liu Yang, Rui Ma.Driving behavior recognition using EEG data from a simulated car-following Experiment[J].Accident Analysis and Prevention,116 (2018):30–40.10.1016/j.aap.2017.11.01029174606Search in Google Scholar

[25] Damodar Reddy Edla, Md Fahim Ansari, et al. Classification of Facial Expressions from EEG signals using Wavelet Packet Transform and SVM for Wheelchair Control Operations[J]. Procedia Computer Science, 132 (2018):1467–1476.10.1016/j.procs.2018.05.081Search in Google Scholar

[26] J. Suto, S. Oniga, Efficiency investigation of artificial neural networks in human activity recognition, Journal of Ambient Intelligence and Humanized Computing 9 (4), 1049-1060, August 2018. DOI:https://doi.org/10.1007/s12652-017-0513-5.WOS:000440310900012.Search in Google Scholar

[27] J. Suto, S. Oniga, C. Lung, I. Orha, Comparison of offline and realtime human activity recognition results using machine learning techniques, Neural Computing and Applications, March 2018. https://doi.org/10.1007/s00521-018-3437-x.10.1007/s00521-018-3437-xSearch in Google Scholar

[28] Payal Dande, Purva Samant.acquaintance to Artificial Neural Networks and use of artificial intelligence as a diagnostic tool for tuberculosis: A review[J]. Tuberculosis, 108 (2018):1-9.10.1016/j.tube.2017.09.00629523307Search in Google Scholar

[29] Errikos.Ventouras, Efstratia A. Monoyiou, Periklis Y. Ktonas, Thomas Paparrigopoulos, Dimitris G.Dikeos, Nikos K.Uzunoglu, Constantin R.Soldatos. Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: A feasibility study[J]. Computer Methods and Programs in Biomedicine,78 (2005):191-207.10.1016/j.cmpb.2005.02.00615899305Search in Google Scholar

[30] Enzo Grossi, Chiara Olivieri, Massimo Buscema. Diagnosis of autism through EEG processed by advanced computational algorithms: A pilot study[J].Computer Methods and Programs in Biomedicine,142 (2017):73–79.10.1016/j.cmpb.2017.02.00228325448Search in Google Scholar

[31] Alexander Craik, Yongtian He, Jose L. Contreras-Vidal.Deep Learning for Electroencephalogram (EEG) Classification Tasks: A Review[J]. Journal of Neural Engineering,2019.10.1088/1741-2552/ab0ab530808014Search in Google Scholar

[32] Pascal Soucy, Guy W.Mineau. A Simple KNN Algorithm for Text Categorization[J].Proceedings of the IEEE International Conference on Data Mining,2001(2):647-648.Search in Google Scholar

[33] K.Murphy, B.van Ginneken, A.M.R.Schilham, B.J.de Hoop, H.A. Gietema, M.Prokop.A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearestneighbor classification[J].Medical Image Analysis, 13 (2009):757–770.10.1016/j.media.2009.07.00119646913Search in Google Scholar

[34] L.F.Nicolas-Alonso and J.Gomez-Gil. Brain computer interfaces, a review.Sensor,2012(12):1211-1279.10.3390/s120201211330411022438708Search in Google Scholar

[35] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, pp. 273-297, 1995.10.1007/BF00994018Search in Google Scholar

[36] Yun Li.Recognition Algorithm of Driving Fatigue Related Problems Based on EEGSignals[J].NeuroQuantology,2018,16(6):517-523.10.14704/nq.2018.16.6.1539Search in Google Scholar

[37] Siuly Siuly, Yan Li. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification[J]. Computer methods and programs in biomedicine,119 (2015):29–42.10.1016/j.cmpb.2015.01.00225704869Search in Google Scholar

[38] Farajollah Tahernezhad-Javazm, Vahid Azimirad and Maryam Shoaran.A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain-machine interface systems[J]. Journal of Neural Engineering,15(2018):021007 (39pp).10.1088/1741-2552/aa806328718779Search in Google Scholar

[39] Juliano Machado, Alexandre Balbinot. Executed Movement Using EEG Signals through a Naive Bayes Classifier[J]. Micromachines, 2014(5):1082-1105.10.3390/mi5041082Search in Google Scholar

[40] Raja Majid Mehmood, Ruoyu Du, Hyo Jong LEE.Optimal Feature Selection and Deep Learning Ensembles Method for Emotion Recognition From Human Brain EEG Sensors[J]. Digital Object Identifier 10.1109/ACCESS,2017,2724555.Search in Google Scholar

[41] DR.Mohammad A Obeidat, DR.Ayman M.Mansour.EEG Based Epilepsy Diagnosis System using Reconstruction Phase Space and Naive Bayes Classifier[J]. Wseas Transactions on Circuits and Systems,2018(17):159-168.Search in Google Scholar

[42] Mr.Vijay D.Katkar, Mr.Siddhant Vijay Kulkarni.A novel parallel implementation of Naive Bayesian classifier for big data[J]. 2013 International Conference on Green Computing, Communication and Conservation of Energy (IEEE), p847–852.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo