1. bookVolume 2 (2019): Issue 1 (April 2019)
Journal Details
License
Format
Journal
eISSN
2601-9388
First Published
30 Sep 2018
Publication timeframe
2 times per year
Languages
English
access type Open Access

Nutrition challenges in polytrauma patients. New trends in energy expenditure measurements

Published Online: 04 May 2019
Volume & Issue: Volume 2 (2019) - Issue 1 (April 2019)
Page range: 51 - 57
Received: 01 Apr 2019
Accepted: 10 Apr 2019
Journal Details
License
Format
Journal
eISSN
2601-9388
First Published
30 Sep 2018
Publication timeframe
2 times per year
Languages
English
Abstract

Patients hospitalized in Intensive Care Units (ICU) are in severe general condition and they need specialized care, rehabilitation and proper nutrition to improve their condition and recover as soon as possible. Therefore, it is very important that nutrition consists of all necessary elements that will cover their daily demand for nutrients. However, malnutrition among ICU patients is very common. According to statistics, up to 50% is malnourished. It enhances average length of stay, risk of infection, prolongs ventilator days, delays wound healing and translates into an increased hospital cost. It may end in multi-organ failure, what in consequence increases mortality. Polytrauma pa tients lost their energy because of intensified catabolism, due to neuroendocrine changes and inflammatory reactions, which may worsen already existing malnutrition.

Keywords

1. Finfer S. Clinical controversies in the management of critically ill patients with severe sepsis. Virulence [Internet]. 2014;5(1):200–5. Available from: http://www.tandfonline.com/doi/abs/10.4161/viru.2585510.4161/viru.25855391637523921249Search in Google Scholar

2. Lee SH, Park MS, Park BH, Jung WJ, Lee IS, Kim SY, et al. Prognostic implications of serum lipid metabolism over time during sepsis. Biomed Res Int. 2015;2015(Ldl).10.1155/2015/789298455331126351639Search in Google Scholar

3. Simsek T, Uzelli Simsek H, Canturk NZ. Response to trauma and metabolic changes: posttraumatic metabolism. Turkish J Surg [Internet]. 2014;30(3):153–9. Available from: http://www.ulusalcerrahidergisi.org/eng/abstract/1137/eng10.5152/UCD.2014.2653437984425931917Search in Google Scholar

4. Novak F, Heyland DK, Avenell A, Drover JW, Su X. Glutamine supplementation in serious illness: A systematic review of the evidence*. Crit Care Med [Internet]. 2002;30(9). Available from: http://journals.lww.com/ccmjournal/Fulltext/2002/09000/Glutamine_supplementation_in_serious_illness__A.11.aspx10.1097/00003246-200209000-0001112352035Search in Google Scholar

5. Mara J, Gentles E, Alfheeaid HA, Diamantidi K, Spenceley N, Davidson M, et al. An evaluation of enteral nutrition practices and nutritional provision in children during the entire length of stay in critical care. 2014;1–9.10.1186/1471-2431-14-186411261825047460Search in Google Scholar

6. Hu W, Cajas-monson LC, Eisenstein S, Parry L, Cosman B, Ramamoorthy S. Preoperative malnutrition assessments as predictors of postoperative mortality and morbidity in colorectal cancer : an analysis of ACS-NSQIP. 2015;1–6.10.1186/s12937-015-0081-5456143726345703Search in Google Scholar

7. Id AS, Theilla M, Hellerman M, Singer P, Maggiore U, Barbagallo M, et al. Energy and Protein in Critically Ill Patients with AKI : A Prospective, Multicenter Observational Study Using Indirect Calorimetry and Protein Catabolic Rate.Search in Google Scholar

8. Pravda J. Metabolic theory of septic shock. World J Crit Care Med [Internet]. 2014;3(2):45–54. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4038812&tool=pmcentrez&rendertype=abstract10.5492/wjccm.v3.i2.45403881224892019Search in Google Scholar

9. Dogjani A, Zatriqi S, Uranues S, Latifi R. Biology-based nutritional support of critically ill and injured patients. Eur Surg - Acta Chir Austriaca. 2011;43(1):7–12.10.1007/s10353-011-0587-9Search in Google Scholar

10. Ostrowski SR, Sørensen AM, Windeløv NA, Perner A, Welling K-L, Wanscher M, et al. High levels of soluble VEGF receptor 1 early after trauma are associated with shock, sympathoadrenal activation, glycocalyx degradation and inflammation in severely injured patients: a prospective study. Scand J Trauma Resusc Emerg Med [Internet]. 2012;20(1):27. Available from: http://sjtrem.biomedcentral.com/articles/10.1186/1757-7241-20-2710.1186/1757-7241-20-27335231922490186Search in Google Scholar

11. Davis SM, Clark EAS, Nelson LT, Silver RM. The association of innate immune response gene polymorphisms and puerperal group A streptococcal sepsis. Am J Obstet Gynecol [Internet]. 2010 Mar;202(3):308. e1-308.e8. Available from: http://www.sciencedirect.com/science/article/pii/S000293781000007410.1016/j.ajog.2010.01.00620207250Search in Google Scholar

12. de Oliveira Iglesias S, Leite H, Paes Â, de Oliveira S, Sarni R. Low plasma selenium concentrations in critically ill children: the interaction effect between inflammation and selenium deficiency. Crit Care [Internet]. 2014;18(3):R101. Available from: http://ccforum.biomedcentral.com/articles/10.1186/cc1387710.1186/cc13877407524624886623Search in Google Scholar

13. Rogobete AF, Sandesc D, Papurica M, Stoicescu ER, Popovici SE, Bratu LM, et al. The influence of metabolic imbalances and oxidative stress on the outcome of critically ill polytrauma patients: a review. Burn Trauma [Internet]. 2017;5(1):8. Available from: http://burnstrauma.biomedcentral.com/articles/10.1186/s41038-017-0073-010.1186/s41038-017-0073-0534143228286784Search in Google Scholar

14. Hartl WH, Jauch KW. Metabolic self-destruction in critically ill patients: Origins, mechanisms and therapeutic principles. Nutrition [Internet]. 2014;30(3):261–7. Available from: http://dx.doi.org/10.1016/j.nut.2013.07.01910.1016/j.nut.2013.07.01924369911Search in Google Scholar

15. Andrews PJD, Avenell A, Noble DW, Campbell MK, Croal BL, Simpson WG, et al. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. Bmj [Internet]. 2011;342(mar17 2):d1542–d1542. Available from: http://www.bmj.com/cgi/doi/10.1136/bmj.d154210.1136/bmj.d154221415104Search in Google Scholar

16. Papurica M, Rogobete AF, Sandesc D, Dumache R, Nartita R, Sarandan M, et al. Redox Changes Induced by General Anesthesia in Critically Ill Patients with Multiple Traumas. Mol Biol Int. 2015;2015:238586.10.1155/2015/238586467461526693352Search in Google Scholar

17. Bedreag OH, Rogobete AF, Sandesc D, Cradigati CA, Sarandan M, Popovici SE, et al. Modulation of the Redox Expression and Inflammation Response in the Critically Ill Polytrauma Patient with Thoracic Injury. Statistical Correlations between Antioxidant Therapy and Clinical Aspects. A Retrospective Single Center Study. 2016;(10):1747–59.10.7754/Clin.Lab.2016.16020628164593Search in Google Scholar

18. Papurica M, Rogobete AF, Sandesc D, Dumache R, Cradigati CA, Sarandan M, et al. Advances in biomarkers in critical ill poly-trauma patients. Clin Lab. 2016;62(6).10.7754/Clin.Lab.2015.15110327468558Search in Google Scholar

19. Bedreag OH, Rogobete AF, Sărăndan M, Cradigati A, Păpurică M, Maria O, et al. Oxidative stress and antioxidant therapy in traumatic spinal cord injuries. 2014;21(2):123–9.Search in Google Scholar

20. Koekkoek WAC (Kristine), van Zanten ARH. Antioxidant Vitamins and Trace Elements in Critical Illness. Nutr Clin Pract [Internet]. 2016;31(4):457–74. Available from: http://journals.sagepub.com/doi/10.1177/088453361665383210.1177/088453361665383227312081Search in Google Scholar

21. Maraki MI, Panagiotakos B, Jansen LT. Validity of Predictive Equations for Resting Energy Expenditure in Greek Adults. 2018;72701:134–41.Search in Google Scholar

22. Nakajima N, Ito Y, Yokoyama K, Uno A, Kato K, Iwasaki A, et al. The expresssion of Mdm2 on Helicobacter pylori infected intestinal metaplasia and gastric cancer. J Clin Biochem Nutr. 2005;128(4):A401–2.Search in Google Scholar

23. Compher C, Frankenfield D, Keim N, Roth-Yousey L. Best Practice Methods to Apply to Measurement of Resting Metabolic Rate in Adults: A Systematic Review. J Am Diet Assoc. 2006;106(6):881–903.10.1016/j.jada.2006.02.00916720129Search in Google Scholar

24. Frankenfield D, Hise M, Malone A, Russell M, Gradwell E, Compher C. Prediction of resting metabolic rate in critically ill adult patients: results of a systematic review of the evidence. J Am Diet Assoc. 2007;107(9):1552–61.10.1016/j.jada.2007.06.01017761232Search in Google Scholar

25. Kross EK, Sena M, Schmidt K, Stapleton RD. A comparison of predictive equations of energy expenditure and measured energy expenditure in critically ill patients. J Crit Care [Internet]. 2012;27(3):321. e5-321.e12. Available from: http://dx.doi.org/10.1016/j.jcrc.2011.07.08410.1016/j.jcrc.2011.07.084335852722425340Search in Google Scholar

26. In R, Eh E. Recent advances in gas exchange measurement in intensive care patients. 2003;91(1):120–31.Search in Google Scholar

27. Hensel M, Kox WJ. Increased intrapulmonary oxygen consumption in mechanically ventilated patients with pneumonia. Am J Respir Crit Care Med [Internet]. 1999;160(1):137–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1039039110.1164/ajrccm.160.1.971101810390391Search in Google Scholar

28. Moral V. Alveolar recruitment improves ventilation during thoracic surgery : a randomized controlled trial. 2012;108(May 2011):517–24.10.1093/bja/aer41522201185Search in Google Scholar

29. Peyton P, Stuart-andrews C, Robinson G. Indirect Calorimetry has Better Reproducibility than the Reverse Fick Method in Measurement of Oxygen Uptake. 2010;1–6.Search in Google Scholar

30. Singer P, Pogrebetsky I, Attal-Singer J, Cohen J. Comparison of metabolic monitors in critically ill, ventilated patients. Nutrition. 2006;22(11–12):1077–86.10.1016/j.nut.2006.06.00716973331Search in Google Scholar

31. Briassoulis G, Michaeloudi E, Fitrolaki DM, Spanaki AM, Briassouli E. Influence of different ventilator modes on Vo2 and Vco2 measurements using a compact metabolic monitor. Nutrition [Internet]. 2009;25(11–12):1106–14. Available from: http://dx.doi.org/10.1016/j.nut.2009.01.01810.1016/j.nut.2009.01.01819502007Search in Google Scholar

32. Meyer R, Briassouli E, Briassoulis G, Habibi P. Evaluation of the M-COVX metabolic monitor in mechanically ventilated adult patients. e-SPEN. 2008;3(5).10.1016/j.eclnm.2008.06.001Search in Google Scholar

33. Sundström M, Tjäder I, Rooyackers O, Wernerman J. Indirect calorimetry in mechanically ventilated patients. A systematic comparison of three instruments. Clin Nutr [Internet]. 2013;32(1):118–21. Available from: http://dx.doi.org/10.1016/j.clnu.2012.06.00410.1016/j.clnu.2012.06.00422763268Search in Google Scholar

34. Blond E, Maitrepierre C, Normand S, Sothier M, Roth H, Goudable J, et al. A new indirect calorimeter is accurate and reliable for measuring basal energy expenditure, thermic effect of food and substrate oxidation in obese and healthy subjects. e-SPEN [Internet]. 2011;6(1):e7–15. Available from: http://dx.doi.org/10.1016/j.eclnm.2010.12.00110.1016/j.eclnm.2010.12.001Search in Google Scholar

35. Graf S, Karsegard VL, Viatte V, Heidegger CP, Fleury Y, Pichard C, et al. Evaluation of three indirect calorimetry devices in mechanically ventilated patients: Which device compares best with the Deltatrac II®? A prospective observational study. Clin Nutr [Internet]. 2015;34(1):60–5. Available from: http://dx.doi.org/10.1016/j.clnu.2014.01.00810.1016/j.clnu.2014.01.00824485773Search in Google Scholar

36. Wang X, Ms YW, Ding Z, Ms GC, Hu F. Relative validity of an indirect calorimetry device for measuring resting energy expenditure and respiratory quotient. 2018;27(December 2015):72–7.Search in Google Scholar

37. Rosado EL, Kaippert VC, Brito RS De. Energy Expenditure Measured by Indirect Calorimetry in Obesity. 2013;Search in Google Scholar

38. Panitchote A, Thiangpak N, Hongsprabhas P, Hurst C. Short Communication Energy expenditure in severe sepsis or septic shock in a Thai Medical Intensive Care Unit. 2017;26(April 2016):794–7.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo