1. bookVolume 2 (2019): Issue 1 (April 2019)
Journal Details
License
Format
Journal
First Published
30 Sep 2018
Publication timeframe
2 times per year
Languages
English
Copyright
© 2020 Sciendo

New Drug Delivery Systems Concept in Anaesthesia and Intensive Care—Controlled Release of Active Compounds

Published Online: 04 May 2019
Page range: 3 - 10
Received: 11 Oct 2018
Accepted: 05 Jan 2019
Journal Details
License
Format
Journal
First Published
30 Sep 2018
Publication timeframe
2 times per year
Languages
English
Copyright
© 2020 Sciendo
Abstract

With time, medical and pharmaceutical research has advanced significantly. However, one of the major issues is how to administer the active substance. Among these, it counts over-or under-dosage of the active substance, low response to treatment, or increased clinical risk of the patient. An innovative method able to avoid these obstacles is represented by controlled release systems for active substances. The interest for these systems came with allowing encapsulation in the antibiotic release matrices, local anesthetics, protein or other substances. Moreover, a number of such vehicles are now available to release controlled substances used predominantly in the anesthesia and intensive care unit.

Keywords

1. Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 2013; 65:104-120Search in Google Scholar

2. Mrsny RJ. Oral drug delivery research in Europe. J Control Release 2012; 161:247-253Search in Google Scholar

3. Webster DM, Sundaram P, Byrne ME. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm 2013; 84:1-20Search in Google Scholar

4. Ukmar T, Maver U, Planinšek O, Kaučič V, Gaberšček M, Godec A. Understanding controlled drug release from mesoporous silicates: Theory and experiment. Journal of Controlled Release 2011; 155:409-417Search in Google Scholar

5. Rana S, Bajaj A, Mout R, Rotello VM. Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 2012; 64:200-216Search in Google Scholar

6. Castro E, Mosquera V, Katime I. Dual Drug Release of Triamterene and Aminophylline from Poly(N-isopropylacrylamide) Hydrogels. Nanomater Nanotechnol 2012; 2:1-9Search in Google Scholar

7. Robeiro LN, Alcântara AC, Darder M, Aranda P, Araújo-Moreira FM, Ruiz-Hitzky E. Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. Int J Pharm 2014; 463:1-9Search in Google Scholar

8. Wang C, Ye W, Zheng Y, Liu X, Tong Z. Fabrication of drug-loaded biodegradable microcapsules for controlled release by combination of solvent evaporation and layer-by-layer self-assembly. Int J Pharm 2007; 338:165-173Search in Google Scholar

9. Ma J, Zhang M, Lu L, Yin X, Chen J, Jiang Z. Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan-TEOS hybrid membranes. Chem Engin J 2009; 155:800-809Search in Google Scholar

10. Morpurgo M, Teoli D, Pignatto M, Attrezzi M, Spadaro F, Realdon N. The effect of Na2CO3, NaF and NH4OH on the stability and release behavior of sol-gel derived silica xerogels embedded with bioactive compunds. Acta Biomater 2010; 6:2246-2253Search in Google Scholar

11. Estella J, Echeverría JC, Laguna M, Garrido JJ. Effects of aging and drying conditions on the structural and textural properties of silica gels. Micropor Mesopor Mater 2007; 102:274-282Search in Google Scholar

12. Tsai CH, Lin HJ, Tsai HM, Hwang JT, Chang SM, Chen-Yang YW. Characterization and PEMFC application of a mesoporous sulfonated silica prepared from two precursors, tetraethoxysilane and phenyltriethoxysilane. Int J Hydrogen Energy 2011; 36:9831-9841Search in Google Scholar

13. Estella J, Echeverría JC, Laguna M, Garrido JJ. Silica xerogels of tailored porosity as support matrix for optical chemical sensors. Simultaneous effect of pH, ethanol:TEOS and water:TEOS molar ratios, and synthesis temperature on gelation time, and textural and structural properties. J NonCryst Solids 2007; 353: 286-294Search in Google Scholar

14. Timin AS, Rumyantsev EV. Sol-gel synthesis of mesoporous silicas containing albumin and guanidine polymers and its application to the bilirubin adsorption. J Sol-Gel Sci Technol 2013; 67:297-303Search in Google Scholar

15. Radin S, Chen T, Ducheyne P. The controlled release of drugs from emulsified, solgel processed silica microspheres. Biomaterials 2009; 30: 850-858Search in Google Scholar

16. Dudás Z, Chiriac A, Preda G. Simple entrapment of alcalase in different silica xerogels using the two steps sol-gel method. Annals of West University of Timişoara – Series Chemistry 2011; 20:97-104Search in Google Scholar

17. Tan S, Wu Q, Wang J, et al. Dynamic self-assembly synthesis and controlled release as drug vehicles of porous hollow silica nanoparticles. Micropor Mesopor Mater 2011; 142:601-608Search in Google Scholar

18. Wang Y, Grayson SM. Approaches for the preparation of non-linear amphiphilic polymers and their applications to drug delivery. Adv Drug Deliv Rev 2012; 64:852-865Search in Google Scholar

19. Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 2011; 63: 470-491Search in Google Scholar

20. Jansen JFGA, Meijer EW, de Brabandervan den Berg EMM. The dendritic box: shape-selective liberation of encapsulated guests. J Am Chem Soc 1995; 117:4417-4418Search in Google Scholar

21. Venkataraman S, Hedrick JL, Ong ZY, et al. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 2011; 63:1228-1246Search in Google Scholar

22. Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm J 2011; 19:129-141Search in Google Scholar

23. Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev 2011; 63:1340-1351Search in Google Scholar

24. Han G, Ghosh P, De M, Rotello VM. Drug and gene delivery using gold nanoparticles. Nanobiotechnol 2007; 3:40-45Search in Google Scholar

25. Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62:1052-1063Search in Google Scholar

26. Lee KY, Yuk SH. Polymeric protein delivery systems. Prog Polym Sci 2007; 32:669-697Search in Google Scholar

27. Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 2009; 87:133-170Search in Google Scholar

28. Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 2006; 384:620-630Search in Google Scholar

29. Zalfen AM, Nizet D, Jérôme C, et al. Controlled release of drugs from multicomponent biomaterials. Acta Biomater 2008; 4:1788-1796Search in Google Scholar

30. Cheng S, Song Q, Wei D, Gao B. High-level production penicillin G acylase from Alcaligenes faecalis in recombinant Escherichia coli with optimization of carbon sources. Enzyme Microb Technol 2007; 41:326-330Search in Google Scholar

31. Wang F, Saidel GM, Gao J. A mechanistic model of controlled drug release from polymer millirods: effects of excipients and complex binding. Control Release 2007; 119:111-120Search in Google Scholar

32. Machín R, Isasi JR, Vélaz I. Hydrogel matrices containing single and mixed natural cyclodextrins. Mechanisms of drug release. Eur Polym J 2013; 49: 3912-3920Search in Google Scholar

33. Kona S, Dong JF, Liu Y, Tan J, Nguyen KT. Biodegradable nanoparticles mimicking platelet binding as a targeted and controlled drug delivery system. Int J Pharm 2012; 423:516-524Search in Google Scholar

34. Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res 2011; 28:215-236Search in Google Scholar

35. Xia W, Chang J, Lin J, Zhu J. The pH-controlled dual-drug release from mesoporous bioactive glass/polypeptide graft copolymer nanomicelle composites. Eur J Pharm Biopharm 2008; 69:546-552Search in Google Scholar

36. Kreye F, Siepmann F, Siepmann J. Drug release mechanisms of compressed lipid implants. Int J Pharm 2011; 404:27-35Search in Google Scholar

37. Tran PHL, Choe JS, Tran TTD, Park YM, Lee BJ. Design and mechanism of onoff pulsed drug release using nonenteric polymeric systems via pH modulation. AAPS PharmSciTech 2011; 12:46-55Search in Google Scholar

38. Hayashi T, Kanbe H, Okada M, et al. Formulation study and drug release mechanism of a new theophylline sustained-release preparation. Int J Pharm 2005; 304: 91-101Search in Google Scholar

39. Yoshida T, Tasaky H, Maeda A, Katsuma M, Sako K, Uchida T. Mechanism of controlled drug release from a salting-out taste-masking system. J Control Release 2008; 131:47-53Search in Google Scholar

40. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems – A review. Int J Pharm 2011; 415:34-52Search in Google Scholar

41. Ferrero C, Massuelle D, Doelker E. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swelling-controlled drug release mechanism using dimensionless analysis. J Control Release 2010; 141: 223-233Search in Google Scholar

42. Gustavsson A, Bjorkman J, Ljungcrantz C, et al. Pharmaceutical treatment patterns for patients with a diagnosis related to chronic pain initiating slow-release strong opioid treatment in Sweden. Pain 2012; 153:2325-2331Search in Google Scholar

43. Hoya Y, Okamoto T, Yanaga K. Evaluation of analgesic effect and safety of fentanyl transdermal patch for cancer pain as the first line. Support Care Cancer 2010; 18:761-764Search in Google Scholar

44. Kress HG, Von der Laage D, Hoerauf KH, et al. A randomized, open, parallel group, multicenter trial to investigate analgesic efficacy and safety of a new transdermal fentanyl patch compared to standard opioid treatment in cancer pain. J Pain Symptom Manage 2008; 36: 268-279Search in Google Scholar

45. Lane ME. The Transdermal delivery of fentanyl. Eur J Pharm Biopharm 2013; 84:449-455Search in Google Scholar

46. Minkowitz HS. Fentanyl iontophoretic transdermal system: a review. Tech Reg Anesth Pain Managt 2007; 11: 3-8Search in Google Scholar

47. Freynhagen R, von Giesen HJ, Busche P, Sabatowski R, Konrad C, Grond S. Switching from reservoir to matrix systems for the transdermal delivery of fentanyl: a prospective, multicenter pilot study in outpatients with chronic pain. J Pain Symptom Manage 2005; 30:289-297Search in Google Scholar

48. Margetts L, Sawyer R. Transdermal drug delivery: principles and opioid therapy. Contin Educ Anaesth Crit Care Pain 2007; 7:171-176Search in Google Scholar

49. Kress HG, Boss H, Delvin T, et al. Transdermal fentanyl matrix patches Matrifen and Durogesic DTrans are bioequivalent. Eur J Pharm Biopharm 2010; 75:225-231Search in Google Scholar

50. Bajaj S, Whiteman A, Brandner B. Transdermal drug delivery in pain management. Contin Educ Anaesth Crit Care Pain 2011; 11:39-43Search in Google Scholar

51. Coulthard P, Oliver R, Khan Afridi KA, Jackson-Leech D, Adamson L, Worthington H. The efficacy of local anaesthetic for pain after iliac bone harvesting: a randomised controlled trial. Int J Surg 2008; 6:57-63Search in Google Scholar

52. Ilfeld BM, Malhotra N, Furnish TJ, Donohue MC, Madison SJ. Liposomal bupivacaine as a single-injection peripheral nerve block: a dose-response study. Anesth Analg 2013; 117:1248-1256Search in Google Scholar

53. Viscusi ER, Candiotti KA, Onel E, Morren M, Ludbrook GL. The pharmacokinetics and pharmacodynamics of liposome bupivacaine administered via a single epidural injection to healthy volunteers. Reg Anesth Pain Med 2012; 37:616-622Search in Google Scholar

54. Tsuchiya H, Ueno T, Mizogami M, Takakura K. Local anesthetics structure-dependently interact with anionic phospholipid membranes to modify the fluidity. Chem Biol Interact 2010; 183:19-24Search in Google Scholar

55. Shikanov A, Domb AJ, Weiniger CF. Long acting local anesthetic-polymer formulation to prolong the effect of analgesia. J Control Release 2007; 117: 97-103Search in Google Scholar

56. Rodriguez-Navarro AJ, Lagos M, Figueroa C, et al. Potentiation of local anesthetic activity of neosaxitoxin with bupivacaine or epinephrine: development of a long-acting pain blocker. Neurotox Res 2009; 16:408-415Search in Google Scholar

Plan your remote conference with Sciendo