[1. Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 2013; 65:104-12010.1016/j.addr.2012.10.003356509523088863]Search in Google Scholar
[2. Mrsny RJ. Oral drug delivery research in Europe. J Control Release 2012; 161:247-25310.1016/j.jconrel.2012.01.01722342473]Search in Google Scholar
[3. Webster DM, Sundaram P, Byrne ME. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm 2013; 84:1-2010.1016/j.ejpb.2012.12.00923313176]Search in Google Scholar
[4. Ukmar T, Maver U, Planinšek O, Kaučič V, Gaberšček M, Godec A. Understanding controlled drug release from mesoporous silicates: Theory and experiment. Journal of Controlled Release 2011; 155:409-41710.1016/j.jconrel.2011.06.03821763374]Search in Google Scholar
[5. Rana S, Bajaj A, Mout R, Rotello VM. Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 2012; 64:200-21610.1016/j.addr.2011.08.006325847921925556]Search in Google Scholar
[6. Castro E, Mosquera V, Katime I. Dual Drug Release of Triamterene and Aminophylline from Poly(N-isopropylacrylamide) Hydrogels. Nanomater Nanotechnol 2012; 2:1-910.5772/50338]Search in Google Scholar
[7. Robeiro LN, Alcântara AC, Darder M, Aranda P, Araújo-Moreira FM, Ruiz-Hitzky E. Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. Int J Pharm 2014; 463:1-910.1016/j.ijpharm.2013.12.03524374607]Search in Google Scholar
[8. Wang C, Ye W, Zheng Y, Liu X, Tong Z. Fabrication of drug-loaded biodegradable microcapsules for controlled release by combination of solvent evaporation and layer-by-layer self-assembly. Int J Pharm 2007; 338:165-17310.1016/j.ijpharm.2007.01.04917324539]Search in Google Scholar
[9. Ma J, Zhang M, Lu L, Yin X, Chen J, Jiang Z. Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan-TEOS hybrid membranes. Chem Engin J 2009; 155:800-80910.1016/j.cej.2009.07.044]Search in Google Scholar
[10. Morpurgo M, Teoli D, Pignatto M, Attrezzi M, Spadaro F, Realdon N. The effect of Na2CO3, NaF and NH4OH on the stability and release behavior of sol-gel derived silica xerogels embedded with bioactive compunds. Acta Biomater 2010; 6:2246-225310.1016/j.actbio.2009.12.02120035908]Search in Google Scholar
[11. Estella J, Echeverría JC, Laguna M, Garrido JJ. Effects of aging and drying conditions on the structural and textural properties of silica gels. Micropor Mesopor Mater 2007; 102:274-28210.1016/j.micromeso.2007.01.007]Search in Google Scholar
[12. Tsai CH, Lin HJ, Tsai HM, Hwang JT, Chang SM, Chen-Yang YW. Characterization and PEMFC application of a mesoporous sulfonated silica prepared from two precursors, tetraethoxysilane and phenyltriethoxysilane. Int J Hydrogen Energy 2011; 36:9831-984110.1016/j.ijhydene.2011.04.186]Search in Google Scholar
[13. Estella J, Echeverría JC, Laguna M, Garrido JJ. Silica xerogels of tailored porosity as support matrix for optical chemical sensors. Simultaneous effect of pH, ethanol:TEOS and water:TEOS molar ratios, and synthesis temperature on gelation time, and textural and structural properties. J NonCryst Solids 2007; 353: 286-29410.1016/j.jnoncrysol.2006.12.006]Search in Google Scholar
[14. Timin AS, Rumyantsev EV. Sol-gel synthesis of mesoporous silicas containing albumin and guanidine polymers and its application to the bilirubin adsorption. J Sol-Gel Sci Technol 2013; 67:297-30310.1007/s10971-013-3079-5]Search in Google Scholar
[15. Radin S, Chen T, Ducheyne P. The controlled release of drugs from emulsified, solgel processed silica microspheres. Biomaterials 2009; 30: 850-85810.1016/j.biomaterials.2008.09.06619010531]Search in Google Scholar
[16. Dudás Z, Chiriac A, Preda G. Simple entrapment of alcalase in different silica xerogels using the two steps sol-gel method. Annals of West University of Timişoara – Series Chemistry 2011; 20:97-104]Search in Google Scholar
[17. Tan S, Wu Q, Wang J, et al. Dynamic self-assembly synthesis and controlled release as drug vehicles of porous hollow silica nanoparticles. Micropor Mesopor Mater 2011; 142:601-60810.1016/j.micromeso.2011.01.004]Search in Google Scholar
[18. Wang Y, Grayson SM. Approaches for the preparation of non-linear amphiphilic polymers and their applications to drug delivery. Adv Drug Deliv Rev 2012; 64:852-86510.1016/j.addr.2012.03.01122465560]Search in Google Scholar
[19. Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 2011; 63: 470-49110.1016/j.addr.2011.01.01221315122]Search in Google Scholar
[20. Jansen JFGA, Meijer EW, de Brabandervan den Berg EMM. The dendritic box: shape-selective liberation of encapsulated guests. J Am Chem Soc 1995; 117:4417-441810.1021/ja00120a032]Search in Google Scholar
[21. Venkataraman S, Hedrick JL, Ong ZY, et al. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 2011; 63:1228-124610.1016/j.addr.2011.06.01621777633]Search in Google Scholar
[22. Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm J 2011; 19:129-14110.1016/j.jsps.2011.04.001374499923960751]Search in Google Scholar
[23. Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev 2011; 63:1340-135110.1016/j.addr.2011.06.01321756952]Search in Google Scholar
[24. Han G, Ghosh P, De M, Rotello VM. Drug and gene delivery using gold nanoparticles. Nanobiotechnol 2007; 3:40-4510.1007/s12030-007-0005-3]Search in Google Scholar
[25. Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62:1052-106310.1016/j.addr.2010.08.004376917020709124]Search in Google Scholar
[26. Lee KY, Yuk SH. Polymeric protein delivery systems. Prog Polym Sci 2007; 32:669-69710.1016/j.progpolymsci.2007.04.001]Search in Google Scholar
[27. Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 2009; 87:133-17010.1016/j.pneurobio.2008.09.009272846218926873]Search in Google Scholar
[28. Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 2006; 384:620-63010.1007/s00216-005-0247-716440195]Search in Google Scholar
[29. Zalfen AM, Nizet D, Jérôme C, et al. Controlled release of drugs from multicomponent biomaterials. Acta Biomater 2008; 4:1788-179610.1016/j.actbio.2008.05.02118583206]Search in Google Scholar
[30. Cheng S, Song Q, Wei D, Gao B. High-level production penicillin G acylase from Alcaligenes faecalis in recombinant Escherichia coli with optimization of carbon sources. Enzyme Microb Technol 2007; 41:326-33010.1016/j.enzmictec.2007.02.011]Search in Google Scholar
[31. Wang F, Saidel GM, Gao J. A mechanistic model of controlled drug release from polymer millirods: effects of excipients and complex binding. Control Release 2007; 119:111-12010.1016/j.jconrel.2007.01.01917379347]Search in Google Scholar
[32. Machín R, Isasi JR, Vélaz I. Hydrogel matrices containing single and mixed natural cyclodextrins. Mechanisms of drug release. Eur Polym J 2013; 49: 3912-392010.1016/j.eurpolymj.2013.08.020]Search in Google Scholar
[33. Kona S, Dong JF, Liu Y, Tan J, Nguyen KT. Biodegradable nanoparticles mimicking platelet binding as a targeted and controlled drug delivery system. Int J Pharm 2012; 423:516-52410.1016/j.ijpharm.2011.11.043327358122172292]Search in Google Scholar
[34. Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res 2011; 28:215-23610.1007/s11095-010-0241-4355924320721603]Search in Google Scholar
[35. Xia W, Chang J, Lin J, Zhu J. The pH-controlled dual-drug release from mesoporous bioactive glass/polypeptide graft copolymer nanomicelle composites. Eur J Pharm Biopharm 2008; 69:546-55210.1016/j.ejpb.2007.11.01818248801]Search in Google Scholar
[36. Kreye F, Siepmann F, Siepmann J. Drug release mechanisms of compressed lipid implants. Int J Pharm 2011; 404:27-3510.1016/j.ijpharm.2010.10.04821055453]Search in Google Scholar
[37. Tran PHL, Choe JS, Tran TTD, Park YM, Lee BJ. Design and mechanism of onoff pulsed drug release using nonenteric polymeric systems via pH modulation. AAPS PharmSciTech 2011; 12:46-5510.1208/s12249-010-9562-1306636021161457]Search in Google Scholar
[38. Hayashi T, Kanbe H, Okada M, et al. Formulation study and drug release mechanism of a new theophylline sustained-release preparation. Int J Pharm 2005; 304: 91-10110.1016/j.ijpharm.2005.07.02216154302]Search in Google Scholar
[39. Yoshida T, Tasaky H, Maeda A, Katsuma M, Sako K, Uchida T. Mechanism of controlled drug release from a salting-out taste-masking system. J Control Release 2008; 131:47-5310.1016/j.jconrel.2008.07.00918680773]Search in Google Scholar
[40. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems – A review. Int J Pharm 2011; 415:34-5210.1016/j.ijpharm.2011.05.04921640806]Search in Google Scholar
[41. Ferrero C, Massuelle D, Doelker E. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swelling-controlled drug release mechanism using dimensionless analysis. J Control Release 2010; 141: 223-23310.1016/j.jconrel.2009.09.01119766681]Search in Google Scholar
[42. Gustavsson A, Bjorkman J, Ljungcrantz C, et al. Pharmaceutical treatment patterns for patients with a diagnosis related to chronic pain initiating slow-release strong opioid treatment in Sweden. Pain 2012; 153:2325-233110.1016/j.pain.2012.07.01122944610]Search in Google Scholar
[43. Hoya Y, Okamoto T, Yanaga K. Evaluation of analgesic effect and safety of fentanyl transdermal patch for cancer pain as the first line. Support Care Cancer 2010; 18:761-76410.1007/s00520-010-0869-y20354734]Search in Google Scholar
[44. Kress HG, Von der Laage D, Hoerauf KH, et al. A randomized, open, parallel group, multicenter trial to investigate analgesic efficacy and safety of a new transdermal fentanyl patch compared to standard opioid treatment in cancer pain. J Pain Symptom Manage 2008; 36: 268-27910.1016/j.jpainsymman.2007.10.02318538974]Search in Google Scholar
[45. Lane ME. The Transdermal delivery of fentanyl. Eur J Pharm Biopharm 2013; 84:449-45510.1016/j.ejpb.2013.01.01823419814]Search in Google Scholar
[46. Minkowitz HS. Fentanyl iontophoretic transdermal system: a review. Tech Reg Anesth Pain Managt 2007; 11: 3-810.1053/j.trap.2007.02.001]Search in Google Scholar
[47. Freynhagen R, von Giesen HJ, Busche P, Sabatowski R, Konrad C, Grond S. Switching from reservoir to matrix systems for the transdermal delivery of fentanyl: a prospective, multicenter pilot study in outpatients with chronic pain. J Pain Symptom Manage 2005; 30:289-29710.1016/j.jpainsymman.2005.03.01516183013]Search in Google Scholar
[48. Margetts L, Sawyer R. Transdermal drug delivery: principles and opioid therapy. Contin Educ Anaesth Crit Care Pain 2007; 7:171-17610.1093/bjaceaccp/mkm033]Search in Google Scholar
[49. Kress HG, Boss H, Delvin T, et al. Transdermal fentanyl matrix patches Matrifen and Durogesic DTrans are bioequivalent. Eur J Pharm Biopharm 2010; 75:225-23110.1016/j.ejpb.2010.02.00520152899]Search in Google Scholar
[50. Bajaj S, Whiteman A, Brandner B. Transdermal drug delivery in pain management. Contin Educ Anaesth Crit Care Pain 2011; 11:39-4310.1093/bjaceaccp/mkq054]Search in Google Scholar
[51. Coulthard P, Oliver R, Khan Afridi KA, Jackson-Leech D, Adamson L, Worthington H. The efficacy of local anaesthetic for pain after iliac bone harvesting: a randomised controlled trial. Int J Surg 2008; 6:57-6310.1016/j.ijsu.2007.07.00217869596]Search in Google Scholar
[52. Ilfeld BM, Malhotra N, Furnish TJ, Donohue MC, Madison SJ. Liposomal bupivacaine as a single-injection peripheral nerve block: a dose-response study. Anesth Analg 2013; 117:1248-125610.1213/ANE.0b013e31829cc6ae380848024108252]Search in Google Scholar
[53. Viscusi ER, Candiotti KA, Onel E, Morren M, Ludbrook GL. The pharmacokinetics and pharmacodynamics of liposome bupivacaine administered via a single epidural injection to healthy volunteers. Reg Anesth Pain Med 2012; 37:616-62210.1097/AAP.0b013e318269d29e23080351]Search in Google Scholar
[54. Tsuchiya H, Ueno T, Mizogami M, Takakura K. Local anesthetics structure-dependently interact with anionic phospholipid membranes to modify the fluidity. Chem Biol Interact 2010; 183:19-2410.1016/j.cbi.2009.10.00619853592]Search in Google Scholar
[55. Shikanov A, Domb AJ, Weiniger CF. Long acting local anesthetic-polymer formulation to prolong the effect of analgesia. J Control Release 2007; 117: 97-10310.1016/j.jconrel.2006.10.01417137669]Search in Google Scholar
[56. Rodriguez-Navarro AJ, Lagos M, Figueroa C, et al. Potentiation of local anesthetic activity of neosaxitoxin with bupivacaine or epinephrine: development of a long-acting pain blocker. Neurotox Res 2009; 16:408-41510.1007/s12640-009-9092-319636660]Search in Google Scholar