1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
eISSN
2601-9388
First Published
30 Sep 2018
Publication timeframe
2 times per year
Languages
English
Open Access

New Drug Delivery Systems Concept in Anaesthesia and Intensive Care—Controlled Release of Active Compounds

Published Online: 18 Jan 2019
Volume & Issue: AHEAD OF PRINT
Page range: -
Received: 11 Oct 2018
Accepted: 01 May 2018
Journal Details
License
Format
Journal
eISSN
2601-9388
First Published
30 Sep 2018
Publication timeframe
2 times per year
Languages
English

1. Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 2013; 65:104-12010.1016/j.addr.2012.10.003356509523088863Search in Google Scholar

2. Mrsny RJ. Oral drug delivery research in Europe. J Control Release 2012; 161:247-25310.1016/j.jconrel.2012.01.01722342473Search in Google Scholar

3. Webster DM, Sundaram P, Byrne ME. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm 2013; 84:1-2010.1016/j.ejpb.2012.12.00923313176Search in Google Scholar

4. Ukmar T, Maver U, Planinšek O, Kaučič V, Gaberšček M, Godec A. Understanding controlled drug release from mesoporous silicates: Theory and experiment. Journal of Controlled Release 2011; 155:409-41710.1016/j.jconrel.2011.06.03821763374Search in Google Scholar

5. Rana S, Bajaj A, Mout R, Rotello VM. Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 2012; 64:200-21610.1016/j.addr.2011.08.006325847921925556Search in Google Scholar

6. Castro E, Mosquera V, Katime I. Dual Drug Release of Triamterene and Aminophylline from Poly(N-isopropylacrylamide) Hydrogels. Nanomater Nanotechnol 2012; 2:1-910.5772/50338Search in Google Scholar

7. Robeiro LN, Alcântara AC, Darder M, Aranda P, Araújo-Moreira FM, Ruiz-Hitzky E. Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. Int J Pharm 2014; 463:1-910.1016/j.ijpharm.2013.12.03524374607Search in Google Scholar

8. Wang C, Ye W, Zheng Y, Liu X, Tong Z. Fabrication of drug-loaded biodegradable microcapsules for controlled release by combination of solvent evaporation and layer-by-layer self-assembly. Int J Pharm 2007; 338:165-17310.1016/j.ijpharm.2007.01.04917324539Search in Google Scholar

9. Ma J, Zhang M, Lu L, Yin X, Chen J, Jiang Z. Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan-TEOS hybrid membranes. Chem Engin J 2009; 155:800-80910.1016/j.cej.2009.07.044Search in Google Scholar

10. Morpurgo M, Teoli D, Pignatto M, Attrezzi M, Spadaro F, Realdon N. The effect of Na2CO3, NaF and NH4OH on the stability and release behavior of sol-gel derived silica xerogels embedded with bioactive compunds. Acta Biomater 2010; 6:2246-225310.1016/j.actbio.2009.12.02120035908Search in Google Scholar

11. Estella J, Echeverría JC, Laguna M, Garrido JJ. Effects of aging and drying conditions on the structural and textural properties of silica gels. Micropor Mesopor Mater 2007; 102:274-28210.1016/j.micromeso.2007.01.007Search in Google Scholar

12. Tsai CH, Lin HJ, Tsai HM, Hwang JT, Chang SM, Chen-Yang YW. Characterization and PEMFC application of a mesoporous sulfonated silica prepared from two precursors, tetraethoxysilane and phenyltriethoxysilane. Int J Hydrogen Energy 2011; 36:9831-984110.1016/j.ijhydene.2011.04.186Search in Google Scholar

13. Estella J, Echeverría JC, Laguna M, Garrido JJ. Silica xerogels of tailored porosity as support matrix for optical chemical sensors. Simultaneous effect of pH, ethanol:TEOS and water:TEOS molar ratios, and synthesis temperature on gelation time, and textural and structural properties. J NonCryst Solids 2007; 353: 286-29410.1016/j.jnoncrysol.2006.12.006Search in Google Scholar

14. Timin AS, Rumyantsev EV. Sol-gel synthesis of mesoporous silicas containing albumin and guanidine polymers and its application to the bilirubin adsorption. J Sol-Gel Sci Technol 2013; 67:297-30310.1007/s10971-013-3079-5Search in Google Scholar

15. Radin S, Chen T, Ducheyne P. The controlled release of drugs from emulsified, solgel processed silica microspheres. Biomaterials 2009; 30: 850-85810.1016/j.biomaterials.2008.09.06619010531Search in Google Scholar

16. Dudás Z, Chiriac A, Preda G. Simple entrapment of alcalase in different silica xerogels using the two steps sol-gel method. Annals of West University of Timişoara - Series Chemistry 2011; 20:97-104Search in Google Scholar

17. Tan S, Wu Q, Wang J, et al. Dynamic self-assembly synthesis and controlled release as drug vehicles of porous hollow silica nanoparticles. Micropor Mesopor Mater 2011; 142:601-60810.1016/j.micromeso.2011.01.004Search in Google Scholar

18. Wang Y, Grayson SM. Approaches for the preparation of non-linear amphiphilic polymers and their applications to drug delivery. Adv Drug Deliv Rev 2012; 64:852-86510.1016/j.addr.2012.03.01122465560Search in Google Scholar

19. Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 2011; 63: 470-49110.1016/j.addr.2011.01.01221315122Search in Google Scholar

20. Jansen JFGA, Meijer EW, de Brabander-van den Berg EMM. The dendritic box: shape-selective liberation of encapsulated guests. J Am Chem Soc 1995; 117:4417-441810.1021/ja00120a032Search in Google Scholar

21. Venkataraman S, Hedrick JL, Ong ZY, et al. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 2011; 63:1228-124610.1016/j.addr.2011.06.01621777633Search in Google Scholar

22. Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm J 2011; 19:129-14110.1016/j.jsps.2011.04.001374499923960751Search in Google Scholar

23. Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev 2011; 63:1340-135110.1016/j.addr.2011.06.01321756952Search in Google Scholar

24. Han G, Ghosh P, De M, Rotello VM. Drug and gene delivery using gold nanoparticles. Nanobiotechnol 2007; 3:40-4510.1007/s12030-007-0005-3Search in Google Scholar

25. Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62:1052-106310.1016/j.addr.2010.08.004376917020709124Search in Google Scholar

26. Lee KY, Yuk SH. Polymeric protein delivery systems. Prog Polym Sci 2007; 32:669-69710.1016/j.progpolymsci.2007.04.001Search in Google Scholar

27. Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 2009; 87:133-17010.1016/j.pneurobio.2008.09.009272846218926873Search in Google Scholar

28. Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 2006; 384:620-63010.1007/s00216-005-0247-716440195Search in Google Scholar

29. Zalfen AM, Nizet D, Jérôme C, et al. Controlled release of drugs from multi-component biomaterials. Acta Biomater 2008; 4:1788-179610.1016/j.actbio.2008.05.02118583206Search in Google Scholar

30. Cheng S, Song Q, Wei D, Gao B. High-level production penicillin G acylase from Alcaligenes faecalis in recombinant Escherichia coli with optimization of carbon sources. Enzyme Microb Technol 2007; 41:326-33010.1016/j.enzmictec.2007.02.011Search in Google Scholar

31. Wang F, Saidel GM, Gao J. A mechanistic model of controlled drug release from polymer millirods: effects of excipients and complex binding. Control Release 2007; 119:111-12010.1016/j.jconrel.2007.01.01917379347Search in Google Scholar

32. Machín R, Isasi JR, Vélaz I. Hydrogel matrices containing single and mixed natural cyclodextrins. Mechanisms of drug release. Eur Polym J 2013; 49: 3912-392010.1016/j.eurpolymj.2013.08.020Search in Google Scholar

33. Kona S, Dong JF, Liu Y, Tan J, Nguyen KT. Biodegradable nanoparticles mimicking platelet binding as a targeted and controlled drug delivery system. Int J Pharm 2012; 423:516-52410.1016/j.ijpharm.2011.11.043327358122172292Search in Google Scholar

34. Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res 2011; 28:215-23610.1007/s11095-010-0241-4355924320721603Search in Google Scholar

35. Xia W, Chang J, Lin J, Zhu J. The pH-controlled dual-drug release from mesoporous bioactive glass/polypeptide graft copolymer nanomicelle composites. Eur J Pharm Biopharm 2008; 69:546-55210.1016/j.ejpb.2007.11.01818248801Search in Google Scholar

36. Kreye F, Siepmann F, Siepmann J. Drug release mechanisms of compressed lipid implants. Int J Pharm 2011; 404:27-3510.1016/j.ijpharm.2010.10.04821055453Search in Google Scholar

37. Tran PHL, Choe JS, Tran TTD, Park YM, Lee BJ. Design and mechanism of on-off pulsed drug release using nonenteric polymeric systems via pH modulation. AAPS PharmSciTech 2011; 12:46-5510.1208/s12249-010-9562-1306636021161457Search in Google Scholar

38. Hayashi T, Kanbe H, Okada M, et al. Formulation study and drug release mechanism of a new theophylline sustained-release preparation. Int J Pharm 2005; 304: 91-10110.1016/j.ijpharm.2005.07.02216154302Search in Google Scholar

39. Yoshida T, Tasaky H, Maeda A, Katsuma M, Sako K, Uchida T. Mechanism of controlled drug release from a salting-out taste-masking system. J Control Release 2008; 131:47-5310.1016/j.jconrel.2008.07.00918680773Search in Google Scholar

40. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems - A review. Int J Pharm 2011; 415:34-5210.1016/j.ijpharm.2011.05.04921640806Search in Google Scholar

41. Ferrero C, Massuelle D, Doelker E. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swelling-controlled drug release mechanism using dimensionless analysis. J Control Release 2010; 141: 223-23310.1016/j.jconrel.2009.09.01119766681Search in Google Scholar

42. Gustavsson A, Bjorkman J, Ljungcrantz C, et al. Pharmaceutical treatment patterns for patients with a diagnosis related to chronic pain initiating slow-release strong opioid treatment in Sweden. Pain 2012; 153:2325-233110.1016/j.pain.2012.07.01122944610Search in Google Scholar

43. Hoya Y, Okamoto T, Yanaga K. Evaluation of analgesic effect and safety of fentanyl transdermal patch for cancer pain as the first line. Support Care Cancer 2010; 18:761-76410.1007/s00520-010-0869-y20354734Search in Google Scholar

44. Kress HG, Von der Laage D, Hoerauf KH, et al. A randomized, open, parallel group, multicenter trial to investigate analgesic efficacy and safety of a new transdermal fentanyl patch compared to standard opioid treatment in cancer pain. J Pain Symptom Manage 2008; 36: 268-27910.1016/j.jpainsymman.2007.10.02318538974Search in Google Scholar

45. Lane ME. The Transdermal delivery of fentanyl. Eur J Pharm Biopharm 2013; 84:449-45510.1016/j.ejpb.2013.01.01823419814Search in Google Scholar

46. Minkowitz HS. Fentanyl iontophoretic transdermal system: a review. Tech Reg Anesth Pain Managt 2007; 11: 3-810.1053/j.trap.2007.02.001Search in Google Scholar

47. Freynhagen R, von Giesen HJ, Busche P, Sabatowski R, Konrad C, Grond S. Switching from reservoir to matrix systems for the transdermal delivery of fentanyl: a prospective, multicenter pilot study in outpatients with chronic pain. J Pain Symptom Manage 2005; 30:289-29710.1016/j.jpainsymman.2005.03.01516183013Search in Google Scholar

48. Margetts L, Sawyer R. Transdermal drug delivery: principles and opioid therapy. Contin Educ Anaesth Crit Care Pain 2007; 7:171-17610.1093/bjaceaccp/mkm033Search in Google Scholar

49. Kress HG, Boss H, Delvin T, et al. Transdermal fentanyl matrix patches Matrifen and Durogesic DTrans are bioequivalent. Eur J Pharm Biopharm 2010; 75:225-23110.1016/j.ejpb.2010.02.00520152899Search in Google Scholar

50. Bajaj S, Whiteman A, Brandner B. Transdermal drug delivery in pain management. Contin Educ Anaesth Crit Care Pain 2011; 11:39-4310.1093/bjaceaccp/mkq054Search in Google Scholar

51. Coulthard P, Oliver R, Khan Afridi KA, Jackson-Leech D, Adamson L, Worthington H. The efficacy of local anaesthetic for pain after iliac bone harvesting: a randomised controlled trial. Int J Surg 2008; 6:57-6310.1016/j.ijsu.2007.07.00217869596Search in Google Scholar

52. Ilfeld BM, Malhotra N, Furnish TJ, Donohue MC, Madison SJ. Liposomal bupivacaine as a single-injection peripheral nerve block: a dose-response study. Anesth Analg 2013; 117:1248-125610.1213/ANE.0b013e31829cc6ae380848024108252Search in Google Scholar

53. Viscusi ER, Candiotti KA, Onel E, Morren M, Ludbrook GL. The pharmacokinetics and pharmacodynamics of liposome bupivacaine administered via a single epidural injection to healthy volunteers. Reg Anesth Pain Med 2012; 37:616-62210.1097/AAP.0b013e318269d29e23080351Search in Google Scholar

54. Tsuchiya H, Ueno T, Mizogami M, Takakura K. Local anesthetics structure-dependently interact with anionic phospholipid membranes to modify the fluidity. Chem Biol Interact 2010; 183:19-2410.1016/j.cbi.2009.10.00619853592Search in Google Scholar

55. Shikanov A, Domb AJ, Weiniger CF. Long acting local anesthetic-polymer formulation to prolong the effect of analgesia. J Control Release 2007; 117: 97-10310.1016/j.jconrel.2006.10.01417137669Search in Google Scholar

56. Rodriguez-Navarro AJ, Lagos M, Figueroa C, et al. Potentiation of local anesthetic activity of neosaxitoxin with bupivacaine or epinephrine: development of a long-acting pain blocker. Neurotox Res 2009; 16:408-415.10.1007/s12640-009-9092-319636660Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo