[1. Al Quhtani, M. (2017), “Data Mining Usage in Corporate Information Security: Intrusion Detection Applications”, Business Systems Research, Vol. 8, No. 1, pp. 51-59.10.1515/bsrj-2017-0005]Search in Google Scholar
[2. Belfo, F., Trigo, A., Estébanez, R. P. (2015), “Impact of ICT Innovative Momentum on Real-Time Accounting”, Business Systems Research, Vol. 6, No. 2, pp. 1-17.10.1515/bsrj-2015-0007]Search in Google Scholar
[3. Breiman, L. (2001), “Random Forests”, Machine Learning, Vol. 45, No. 1, pp. 5-32.10.1023/A:1010933404324]Search in Google Scholar
[4. Chen, C., Liu, L. (1993), “Joint Estimation of Model Parameters and Outlier Effects in Time Series”, Journal of the American Statistical Association, Vol. 88, No. 421, pp. 284-297.]Search in Google Scholar
[5. Chu, X., Ilyas, I. F., Krishnana, S., Wang, J. (2016), “Data cleaning: Overview and emerging challenges”, in Özcan, F., Koutrika, G. (Eds.), Proceedings of the 2016 International Conference on Management of Data, ACM, San Francisco, pp. 2201-2206.10.1145/2882903.2912574]Search in Google Scholar
[6. Dempster, A. P., Laird, N. M., Rubin, N. M. (1977), “Maximum likelihood from incomplete data via the EM algorithm”, Journal of Royal Statistical Society Series B, Vol. 39, No. 1, pp. 1-38.]Search in Google Scholar
[7. Fan, W., Bifet, A. (2013), “Mining big data: Current status, and forecast to the future”, ACM siGKDD Explorations Newsletter, Vol. 14, No. 2, pp. 1-5.10.1145/2481244.2481246]Search in Google Scholar
[8. Kalman, R. E. (1960), “A new Approach to linear filtering and prediction problem”, Journal of basic engineering, Vol. 82, No. 1, pp. 34-45.10.1115/1.3662552]Search in Google Scholar
[9. Kandel, S., Heer, J., Plaisant, C., Kennedy, J., van Ham, F., Riche, N.H., Weaver, C., Lee, B., Brodbeck, D., Buono, P. (2011), “Research directions in data wrangling: Visualizations and transformations for usable and credible data”, Information Visualization Journal, Vol. 10, No. 4, pp. 271-288.10.1177/1473871611415994]Search in Google Scholar
[10. Kenda, K. (2017), Artificial data-set for testing time-series additive outlier detection methods, available at: https://www.researchgate.net/publication/317721142_Artificial_dataset_for_testing_time-series_additive_outlier_detecion_methods (18 February 2018).]Search in Google Scholar
[11. Kenda, K., Mladenić, D. (2017), “Autonomous on-line outlier detection framework for streaming sensor data”, in Zadnik Strin, L., Kljajić Borštnar, M., Žerovnik, J., Drobne, S. (Eds.), Proceedings of the 14th International Symposium on Operational Research, Bled, pp. 103-108.]Search in Google Scholar
[12. Kenda, K., Škrbec, J., Škrjanc, M. (2013). “Usage of Kalman Filter for Data Cleaning of Sensor Data”, in Gams, M. (Ed.), Proceedings of the 16th International Multiconference Information Society - IS 2013, Ljubljana, pp. 172-175.]Search in Google Scholar
[13. Krempl, G., Žliobaite, I., Brzezinski, D., Hüllenmeier, E., Last., M., Lemaire, V., Noack, T., Shaker, A., Sievi, S., Spiliopolou, M. (2014), “Open challenges for data stream mining research”, ACM siGKDD Explorations Newsletter, Vol. 16, No. 1, pp. 1-10.10.1145/2674026.2674028]Search in Google Scholar
[14. Krishnan, S., Wang. J., Wu, E., Franklin, M. J., Goldberg, K. (2016), “ActiveClean: interactive data cleaning for statistical modeling”, in Chaudhuri, S., Haritsa, J. (Eds.), Proceedings of the VLDB Endowment, Vol. 9, No. 12, pp. 948-959.10.14778/2994509.2994514]Search in Google Scholar
[15. Marczak, M., Proietti, T., Grassi, S. (2018), “A data-cleaning augmented Kalman filter for robust estimation of state space models”, Econometrics and Statistics, Vol. 5, pp. 107-123.10.1016/j.ecosta.2017.02.002]Search in Google Scholar
[16. Press, G. (2016), “Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says”, available at: https://www.forbes.com/sites/suntrustprivatewealth/2017/12/21/wealth-transfer-are-yousure-your-beneficiaries-are-prepared/ (31 January 2018).]Search in Google Scholar
[17. Shearer, C. (2000), “The CRISP-DM model: the new blueprint for data mining”, Journal of data warehousing, Vol. 5, No. 4, pp. 13-22.]Search in Google Scholar
[18. Xu, S. (2015), “Data Cleaning and Knowledge Discovery in Process Data”, PhD thesis, University of Texas, Austin.]Search in Google Scholar
[19. Yahoo! Webscope (2015), “S5 - A Labeled Anomaly Detection Dataset, version 1.0”, available at: http://research.yahoo.com/Academic_Relations (28 February 2018).]Search in Google Scholar
[20. Zekić-Sušac, M., Has, A. (2015), “Data Mining as Support to Knowledge Management in Marketing”, Business Systems Research Journal, Vol. 6, No. 2, pp. 18-30.10.1515/bsrj-2015-0008]Search in Google Scholar