1. bookVolume 57 (2019): Issue 2 (December 2019)
Journal Details
License
Format
Journal
eISSN
1841-3307
First Published
22 Nov 2012
Publication timeframe
2 times per year
Languages
English
Open Access

Stability by fixed point theory of impulsive differential equations with delay

Published Online: 21 Dec 2020
Volume & Issue: Volume 57 (2019) - Issue 2 (December 2019)
Page range: 18 - 33
Journal Details
License
Format
Journal
eISSN
1841-3307
First Published
22 Nov 2012
Publication timeframe
2 times per year
Languages
English

[1] C. Avramescu, Sur l’existence des solutions convergentes des systèmes d’équations différentielles non linéaires, Ann. Mat. Pura Appl., 81, (1969), 147–16810.1007/BF02413501 Search in Google Scholar

[2] M. Benchohra,J.Henderson, andS.K.Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol. 2, New York, 200610.1155/9789775945501 Search in Google Scholar

[3] T. A. Burton, Stability by fixed point theory or Liapunov theory: a comparaison, Fixed Point Theory, 4, (2003), 15–32 Search in Google Scholar

[4] T. A. Burton, Perron-type stability theorems for neutral equations, Nonlinear Anal., 55, (2003), 285-29710.1016/S0362-546X(03)00240-2 Search in Google Scholar

[5] T. A. Burton and T. Furumochi, Krasnoselskii’s fixed point theorem and stability, Nonlinear Anal., 49, (2002), 445–45410.1016/S0362-546X(01)00111-0 Search in Google Scholar

[6] T. A. Burton and T. Furumochi, Asymptotic behavior of solutions of functional differential equations by fixed point theorems, Proc. Dynamic Syst. Appl., 11, (2002), 499–519 Search in Google Scholar

[7] J. R. Graef, J. Henderson, and A. Ouahab, Impulsive Differential Inclusions. A Fixed Point Approach, De Gruyter Series in Nonlinear Analysis and Applications 20, Berlin: de Gruyter, 201310.1515/9783110295313 Search in Google Scholar

[8] J. R. Graef, J. Henderson, and A. Ouahab, Topological Methods for Differential Equations and Inclusions, Monographs and Research Notes in Mathematics, Boca Raton, FL: CRC Press, 201910.1201/9780429446740 Search in Google Scholar

[9] A. Halanay and D. Wexler, Teoria Calitativa a sistemelor Impulsuri, (in Romanian), Editura Academiei Republicii Socialiste România, Bucharest, Romanian, 1968 Search in Google Scholar

[10] D. D. Bainov, V. Lakshmikantham, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 198910.1142/0906 Search in Google Scholar

[11] Y. C. Liu and Z. X. Li, Schaefer type theorem and periodic solutions of evolution equations, J. Math. Anal. Appl., 316, (2006), 237–25510.1016/j.jmaa.2005.04.045 Search in Google Scholar

[12] V. D. Milman and A. A. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. J. (in Russian), 1, (1960), 233–237 Search in Google Scholar

[13] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 199510.1142/2892 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo