1. bookVolume 22 (2022): Issue 1 (January 2022)
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
Open Access

Enhancing in vitro oocyte maturation competence and embryo development in farm animals: roles of vitamin-based antioxidants – A review

Published Online: 04 Feb 2022
Volume & Issue: Volume 22 (2022) - Issue 1 (January 2022)
Page range: 3 - 19
Received: 22 Feb 2021
Accepted: 24 Jun 2021
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

Abdel-Ghani M., Yanagawa Y., Balboula A., Sakaguchi K., Kanno C., Katagi-ri S., Takahashi M., Nagano M. (2019). Astaxanthin improves the developmental competence of in vitro-grown oocytes and modifies the steroidogenesis of granulosa cells derived from bovine early antral follicles. Rep. Fert. Develop., 31: 272–281.Search in Google Scholar

Abdelnour S.A., Abd El-Hack M.E., Khafaga A.F., Arif M., Taha A.E., Noreldin A.E. (2018). Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J. Therm. Biol., 79: 120–134.Search in Google Scholar

Abdelnour S.A., Abd El-Hack M.E., Swelum A.A.-A., Saadeldin I.M., Noreldin A.E., Khafaga A.F., Al-Mutary M.G., Arif M., Hussein E.-S.O. (2019). The usefulness of retinoic acid supplementation during in vitro oocyte maturation for the in vitro embryo production of livestock: a review. Animals, 9: 561.Search in Google Scholar

Adeldust H., Zeinoaldini S., Kohram H., Roudbar M.A., Joupari M.D. (2015). In vitro maturation of ovine oocyte in a modified granulosa cells co-culture system and alpha-tocopherol supplementation: effects on nuclear maturation and cleavage. J. Anim. Sci. Technol., 57: 27.Search in Google Scholar

Alagawany M., Attia Y.A., Farag M.R., Elnesr S.S., Sameer A.N., Shafi M.E., Khaf-aga A.F., Ohran H., Alaqil A.A., Abd El-Hack M.E. (2020). The strategy of boosting the immune system under the COVID-19 pandemic. Front. Vet. Sci., 7: 570748.Search in Google Scholar

Alaluf S., Heinrich U., Stahl W., Tronnier H., Wiseman S. (2002). Dietary carotenoids contribute to normal human skin color and UV photosensitivity. J. Nutr., 132: 399–403.Search in Google Scholar

Almiñana C., Gil M.A., Cuello C., Caballero I., Roca J., Vazquez J.M., Gomez E., Martinez E.A. (2008). In vitro maturation of porcine oocytes with retinoids improves embryonic development. Rep. Fert. Develop., 20: 483–489.Search in Google Scholar

Arias-Álvarez M., García-García R., López-Tello J., Rebollar P., Gutiérrez-Adán A., Lorenzo P. (2018). α-Tocopherol modifies the expression of genes related to oxidative stress and apoptosis during in vitro maturation and enhances the developmental competence of rabbit oocytes. Rep. Fert. Develop., 30: 1728–1738.Search in Google Scholar

Assis L.C., Straliotto M.R., Engel D., Hort M.A., Dutra R.C., Bem A.F. (2014). β-Caryophyllene protects the C6 glioma cells against glutamate-induced excitotoxicity through the Nrf2 pathway. Neuroscience, 279: 220–231.Search in Google Scholar

Atikuzzaman M., Koo O.J., Kang J.T., Kwon D.K., Park S.J., Kim S.J., Gomez M.N.L., Oh H.J., Hong S.G., Jang G. (2011). The 9-cis retinoic acid signaling pathway and its regulation of prostaglandin-endoperoxide synthase 2 during in vitro maturation of pig cumulus cell-oocyte complexes and effects on parthenogenetic embryo production. Biol. Reprod., 84: 1272–1281.Search in Google Scholar

Attia Y.A., Hassan R.A., Tag El-Din A.E., Abou-Shehema B.M. (2011). Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow-growing chicks exposed to chronic heat stress. J. Anim. Phys. Anim. Nutr., 95: 744–755.Search in Google Scholar

Attia Y.A., Al-Harthi M.A., El-Shafey A.S., Rehab Y.A., Kim W.K. (2017). Enhancing tolerance of broiler chickens to heat stress by supplementation with vitamin E, vitamin C and/or probiotics. Ann. Anim. Sci., 17: 1–15.Search in Google Scholar

Attia Y.A., Abou-Shehema B., Abdellah A.A., Aly O.M., El-Naggar A. (2020 a). Effect of ascorbic acid and/or alpha-tocopherol supplementation on semen quality, metabolic profile, antioxidants status, and DNA of roosters exposed to heat stress. J. Anim. Plant Sci., 30: 325–335.10.36899/JAPS.2020.2.0051Search in Google Scholar

Attia Y.A., Al-Harthi MA., El-Maaty A., Hayum AM. (2020 b). Calcium and cholecalciferol levels on late phase-laying hens’ diets: effects on productive and egg quality traits, blood biochemistry and immune responses. Front. Vet. Sci., 7: 389.10.3389/fvets.2020.00389741296432850998Search in Google Scholar

Baldoceda-Baldeon L.M., Gagné D., Vigneault C., Blondin P., Robert C. (2014). Improvement of bovine in vitro embryo production by vitamin K2 supplementation. Reproduction, 148: 489–497.Search in Google Scholar

Basu A., Imrhan V. (2007). Tomatoes versus lycopene in oxidative stress and carcinogenesis: Conclusions from clinical trials. Euro. J. Clin. Nut., 61: 295–303.Search in Google Scholar

Booth S. (2012). Vitamin K: food composition and dietary intakes. Food Nutr. Res., 56: 5505.Search in Google Scholar

Cajuday L.A., Herrera A.A., Duran D.H. (2012). Effect of retinoic acid on the development of water buffalo embryos in vitro. Philipp J. Vet. Anim. Sci., 38: 107–116.Search in Google Scholar

Camarena V., Wang G. (2016). The epigenetic role of vitamin C in health and disease. Cell Mol. Life Sci., 73: 1645–1658.Search in Google Scholar

Castillo-Martín M., Yeste M., Soler A., Morató R., Bonet S. (2015). Addition of lascorbic acid to culture and vitrification media of IVF porcine blastocysts improves survival and reduces HSPA1A levels of vitrified embryos. Rep. Fert. Develop., 27: 1115–1123.Search in Google Scholar

Cerqua C., Casarin A., Pierrel F., Vazquez Fonseca L., Viola G., Salviati L., Trevisson E. (2019). Vitamin K2 cannot substitute coenzyme Q10 as electron carrier in the mitochondrial respiratory chain of mammalian cells. Sci. Rep., 9: 6553.Search in Google Scholar

Chen X., Xuanm B., Xu D., Wang Q., Cheng M., Jin Y. (2019), Crocin supplementation during oocyte maturation enhances antioxidant defence and subsequent cleavage rate. Rep. Dom. Anim., 54: 300–308.Search in Google Scholar

Chow C.K. (1979). Nutritional influence on cellular antioxidant defense systems. on cellular antioxidant defense systems. Am. J. Clin. Nutr., 32: 1066–1081.Search in Google Scholar

Chowdhury M.M.R., Choi B.H., Khan I., Lee K.L., Mesalam A., Song S.H., Kong I.K. (2017). Supplementation of lycopene in maturation media improves bovine embryo quality in vitro. Theriogenology, 103: 173–184.Search in Google Scholar

Chowdhury M.M.R., Mesalam A., Khan I., Joo M.D., Lee K.L., Xu L., Afrin F., Kong I.K. (2018). Improved developmental competence in embryos treated with lycopene during in vitro culture system. Mol. Reprod. Dev., 85: 46–61.Search in Google Scholar

Chwa M., Atilano S.R., Reddy V., Jordan N., Kim D.W., Kenney M.C. (2006). Increased stress-induced generation of reactive oxygen species and apoptosis in human keratoconus fibroblasts. Invest. Ophthalmol. Vis. Sci., 247: 1902–1910.Search in Google Scholar

Ciepiela P., Dulęba A.J., Kowaleczko E., Chełstowski K., Kurzawa R. (2018). Vitamin D as a follicular marker of human oocyte quality and a serum marker of in vitro fertilization outcome. J. Assisted Rep. Gen., 35: 1265–1276.Search in Google Scholar

Conceição J.C.Z., Moura M.T., Ferreira-Silva J.C., Cantanhêde L.F., Chaves R.M., Lima P.F., Olivera M.A.L. (2016). Incidence of apoptosis after retinoids and insulinlike growth factor-I (IGF-I) supplementation during goat in vitro embryo production. Zygote, 24: 808–813.Search in Google Scholar

D’Aniello C., Cermola F., Patriarca E.J.Minchiotti G. (2017). Vitamin C in stem cell biology: impact on extracellular matrix homeostasis and epigenetics. Stem Cells Int., 8936156.10.1155/2017/8936156541586728512473Search in Google Scholar

Dalvit G., Llanes S.P., Descalzo A., Insani M., Beconi M., Cetica P. (2005). Effect of alpha-tocopherol and ascorbic acid on bovine oocyte in vitro maturation. Rep. Dom. Anim., 40: 93–97.Search in Google Scholar

Deng L., Elmore C.L., Lawrance A.K., Matthews R.G., Rozen R. (2008). Methionine synthase reductase deficiency results in adverse reproductive outcomes and congenital heart defects in mice. Mol. Genet. Metab., 94: 336e42.Search in Google Scholar

Fabris A., Pacheco A., Cruz M., Puente J.M., Fatemi H., Garcia-Velasco J.A. (2014). Impact of circulating levels of total and bioavailable serum vitamin D on pregnancy rate in egg donation recipients. Fertil. Steril., 102: 1608–1612.Search in Google Scholar

Farzollahi M., Tayefi-Nasrabadi H., Mohammadnejad D., Abedelahi A. (2016). Supplementation of culture media with vitamin E improves mouse antral follicle maturation and embryo development from vitrified ovarian tissue. J. Obstet. Gynaecol. Res., 42: 526–535.Search in Google Scholar

Gad A., Abu Hamed S., Khalifa M., Amin A., El-Sayed A., Swiefy S.A., El-Assa S. (2018). Retinoic acid improves maturation rate and upregulates the expression of antioxidant-related genes in in vitro matured buffalo (Bubalus bubalis) oocytes. Inter. J. Vet. Sci. Med., 6: 279–285.Search in Google Scholar

Gadhok A.K., Sinha M., Khunteta R., Vardey S.K., Upadhyaya C., Sharma T.K., Jha M. (2011). Serum homocysteine level and its association with folic acid and vitamin B12 in the third trimester of pregnancies complicated with intrauterine growth restriction. Clin. Lab., 57: 933e8.Search in Google Scholar

Gagnon A., Khan D.R., Sirard M.-A., Girard C., Laforest J.-P., Richard F.J. (2015). Effects of intramuscular administration of folic acid and vitamin B12 on granulosa cells gene expression in postpartum dairy cows. J. Dairy Sci., 98: 7797–7809.Search in Google Scholar

Gholamnezhad Z., Koushyar H., Byrami G., Boskabady M.H. (2013). The extract of Crocus sativus and its constituent safranal, affect serum levels of endothelin and total protein in sensitized guinea pigs. Iran J. Basic Med. Sci., 16: 1022–1026.Search in Google Scholar

Gómez E., Royo L.J., Duque P., Carneiro G., Hidalgo C., Goyache F., Loren-zo P.L., Alvarez I., Facal N., Díez C. (2003). 9-cis-retinoic acid during in vitro maturation improves development of the bovine oocyte and increases midkine but not IGF-I expression in cumulus-granulosa cells. Mol. Rep. Dev., 66: 247–255.Search in Google Scholar

Guo J., Shi L., Gong X., Jiang M., Yin Y., Zhang X., Yin H., Li H., Emori C., Sugiu-ra K., Eppig J.J., Su Y.-Q. (2016). Oocyte-dependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes. J. Cell Sci., 129: 3091–3103.Search in Google Scholar

Hashem N.M., Gonzalez-Bulnes A. (2020) State-of-the-art and prospective of nanotechnologies for smart reproductive management of farm animals. Animals, 10: 840.10.3390/ani10050840727844332414174Search in Google Scholar

Hashem N.M., Abd-Elrazek D., Abo-Elezz Z.R., Latif M.G.A. (2016). Effect of vitamin A or C on physiological and reproductive response of Rahmani ewes during subtropical summer breeding season. Small Rumin. Res., 144: 313–319.Search in Google Scholar

Hashem N.M., Abu-Tor E.M., Abo-Elezz Z.R., Latif M.G.A. (2019). Relevance of antioxidant vitamin supplementation for improvement of milk production, milk quality and energy status of lactating ewes. Small Rumin. Res., 177: 153–159.Search in Google Scholar

Hashem N.M., Gonzalez-Bulnes A., Simal-Gandara J. (2020). Polyphenols in farm animals: source of reproductive gain or waste? Antioxidants, 9: 1023.10.3390/antiox9101023758902833096704Search in Google Scholar

Hattori M., Takesue K., Nishida N., Kato Y., Fujihara N. (2000). Inhibitory effect of retinoic acid on the development of immature porcine granulosa cells to mature cells. J. Mol. Endocrinol., 25: 53–61.Search in Google Scholar

Huang X., Gao S., Xia W., Hou S., Wu K. (2013). Folic acid facilitates in vitro maturation of mouse and Xenopus laevis oocytes. Brit. J. Nutr., 109: 1389–1395.Search in Google Scholar

Ikeda S., Koyama H., Sugimoto M., Kume S. (2012). Roles of one-carbon metabolism in preimplantation period effects on short-term development and long-term programming. J. Rep. Dev., 58: 38e43.Search in Google Scholar

Institute of Medicine, Food and Nutrition Board (1998). Dietary reference intakes: thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington DC: National Academy Press.Search in Google Scholar

Intakes IoMSCotSEoDR (1998). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academies Press, US.Search in Google Scholar

Islam R., Deb G.K., Kabir A., Miraz F.H., Nahar T.N., Hossain J., Paul S. (2017). Supplementation of 9-cis retinoic acid in the in vitro maturation medium increase blastocyst development rate and quality. Asian J. Med. Biol. Res., 3: 516–520.Search in Google Scholar

Ivanova D., Zhelev Z., Getsov P., Nikolova B., Aoki I., Higashi T., Bakalova R. (2018). Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effect. Redox Biol., 16: 352–358.Search in Google Scholar

Jeong Y.W., Park S.W., Hossein M.S., Kim S., Kim J.H., Lee S.H., Kang S.K., Lee B.C., Hwang W.S. (2006). Antiapoptotic and embryotrophic effects of alpha-tocopherol and L-ascorbic acid on porcine embryos derived from in vitro fertilization and somatic cell nuclear transfer. Theriogenology, 66: 2104–2112.Search in Google Scholar

Khafaga A.F., El-Sayed Y.S. (2018). All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. Naunyn-Schmiedeberg’s Arch. Pharm., 391: 59–70.Search in Google Scholar

Laanpere M., Altmäe S., Stavreus-Evers A., Nilsson T.K., Yngve A., Salumets A. (2010). Folate-mediated one-carbon metabolism and its effect on female fertility and pregnancy viability. Nutr. Rev., 68: 99–113.Search in Google Scholar

Li J., Lin J.C., Wang H., Peterson J.W., Furie B.C., Furie B., Booth S.L., Volpe J.J., Rosenberg P.A. (2003). Novel role of vitamin K in preventing oxidative injury to developing oligodendrocytes and neurons. J. Neurosci., 23: 5816–5826.Search in Google Scholar

Li J., Wang H., Rosenberg P.A. (2009). Vitamin K prevents oxidative cell death by inhibiting activation of 12-lipoxygenase in developing oligodendrocytes. J. Neurosci. Res., 87: 1997–2005.Search in Google Scholar

Lima M.E., Pereira R.A., Maffi A.S., Tonellottodos Santos J., Martin C.E., Del Pino F.A., Leal S.D., Brauner C.C., Correa M.N. (2017). Butaphosphan and cyanocobalamin: effects on the aspiration of oocytes and in vitro embryo production in Jersey cows. Canadian J. Anim. Sci., 97: 633–639.Search in Google Scholar

Lin Z.L., Li Y.H., Xu Y.N., Wang Q.L., Namgoong S., Cui X.S., Kim N.H. (2014). Effects of growth differentiation factor 9 and bone morphogenetic protein 15 on the in vitro maturation of porcine oocytes. Reprod. Domest. Anim., 49: 219–227.Search in Google Scholar

Linster C.L., Van Schaftingen E. (2007). Vitamin C. The FEBS J., 274: 1–22.Search in Google Scholar

Liu X., Zhang W., Xu Y., Chu Y., Wang X., Li Q., Ma Z., Liu Z., Wan Y. (2019). Effect of vitamin D status on normal fertilization rate following in vitro fertilization. Rep. Biol. Endocrinol., 17: 59.Search in Google Scholar

Macháty Z., Day B.N., Prather R.S. (1998). Development of early porcine embryos in vitro and in vivo. Biol. Rep., 59: 451–455.Search in Google Scholar

Mc Cluskey S., Hall M., Stanton C., Devery R. (1999). α-tocopherol inhibits oxidative stress induced by cholestanetriol and 25-hydroxycholesterol in porcine ovarian granulosa cells. Mol. Cell. Biochem., 194: 217–225.Search in Google Scholar

Mein J.R., Lian F., Wang X. (2008). Biological activity of lycopene metabolites: implications for cancer prevention. Nutr. Rev., 66: 667–683.Search in Google Scholar

Molloy A.M., Kirke P.N., Troendle J.F., Burke H., Sutton M., Brody L.C., Scott J.M., Mills J.L. (2009). Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic Acid fortification. Pediatrics, 123: 917e23.Search in Google Scholar

Mostafavinia S.E., Khorashadizadeh M., Hoshyar R. (2016). Antiproliferative and proapoptotic effects of crocin combined with hyperthermia on human breast cancer cells. DNA Cell Biol., 35: 340–347.Search in Google Scholar

Moussa M., Yang C.Y., Zheng H.Y., Li M.Q., Yu N.Q., Yan S.F., Huang J.X., Shang J.H. (2019). Vitrification alters cell adhesion related genes in pre-implantation buffalo embryos: Protective role of β-mercaptoethanol. Theriogenology, 125: 317–323.Search in Google Scholar

Nalum-Naess S., Sliwka H.R., Partali V., Melo T.B., Naqvi K.R., Jackson H.L., Lockwood S.F. (2007). Hydrophilic carotenoids: Surface properties and aggregation of an astaxanthin-lysine conjugate, a rigid, long-chain, highly unsaturated and highly water-soluble tetracationic bolaamphiphile. Chem. Phys. Lip., 148: 63–69.Search in Google Scholar

Natarajan R., Shankar M.B., Munuswamy D. (2010). Effect of α-tocopherol supplementation on in vitro maturation of sheep oocytes and in vitro development of preimplantation sheep embryos to the blastocyst stage. J. Assist. Reprod. Genet., 27: 483–490.Search in Google Scholar

Norman A.W. (2006). Vitamin D receptor: new assignments for an already busy receptor. Endocrinology, 147: 5542–5548.Search in Google Scholar

Olson S.E., Seidel Jr G.E. (2000). Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol. Rep., 62: 248–252.Search in Google Scholar

Paffoni A., Ferrari S., Viganò P., Pagliardini L., Papaleo E., Candiani M., Tirel-li A., Fedele L., Somigliana E. (2014). Vitamin D deficiency and infertility: insights from in vitro fertilization cycles. J. Clin. Endocrin. Metab., 99: E2372–2376.Search in Google Scholar

Pepper M.R., Black M.M. (2011). B12 in fetal development Semin. Cell. Dev. Biol., 22: 619e23.Search in Google Scholar

Polyzos N.P., Anckaert E., Guzman L., Schiettecatte J., Van Landuyt L., Camus M., Smitz J., Tournaye H. (2014). Vitamin D deficiency and pregnancy rates in women undergoing single embryo, blastocyst stage, transfer (SET) for IVF/ICSI. Human Rep., 29: 2032–2040.Search in Google Scholar

Preynat A., Lapierre H., Thivierge M.C., Palin M.F., Cardinault N., Matte J.J., Desrochers A., Girard C.L. (2010). Effects of supplementary folic acid and vitamin B (12) on hepatic metabolism of dairy cows according to methionine supply. J. Dairy Sci., 93: 2130–2142.Search in Google Scholar

Pu Y., Wang Z., Bian Y., Zhang F., Yang P., Li Y., Zhang Y., Liu Y., Fang F., Cao H., Zhang X. (2014). All-transretinoic acid improves goat oocyte nuclear maturation and reduces apoptotic cumulus cells during in vitro maturation. Anim. Sci. J., 85: 833–839.Search in Google Scholar

Rosen C.J., Adams J.S., Bikle D.D., Black D.M., Demay M.B., Manson J.E., Mu-rad M.H., Kovacs C.S. (2012). The non-skeletal effects of vitamin D: an Endocrine Society scientific statement. Endocrine Rev., 33: 456–492.Search in Google Scholar

Rush E.C., Katre P., Yajnik C.S. (2014). Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease. Eur. J. Clin. Nutr., 68: 2e7.Search in Google Scholar

Saikhun K., Faisaikarm T., Ming Z., Lu K.H., Kitiyanant Y. (2008). α-Tocopherol and l-ascorbic acid increase the in vitro development of IVM/IVF swamp buffalo (Bubalus bubalis) embryos. Animal, 10: 1486–1490.Search in Google Scholar

Saini S., Sharma V., Kumar A., Thakur A., Bajwa K., Malakar D. (2018). Effect of folic acid supplementation on in vitro maturation of oocytes and folate cycle. Reprod. Fert. Develop., 30: 224–225.Search in Google Scholar

Sato S., Dochi O., Imai K. (2017). Effect of the addition of folic acid to maturation and culture media on development of the bovine blastocyst and its survival rate after freeze-thawing. Reprod. Fert. Develop., 29: 177–177.Search in Google Scholar

Sefid F., Ostadhosseini S., Hosseini S.M., Ghazvini Zadegan F., Pezhman M., Nasr Esfahani M.H. (2017). Vitamin K2 improves developmental competency and cryo-tolerance of in vitro derived ovine blastocyst. Cryobiology, 77: 34–40.Search in Google Scholar

Story E.N., Kopec R.E., Schwartz S.J., Harris G.K. (2010). An update on the health effects of tomato lycopene. Annu. Rev. Food Sci. Technol., 1: 189–210.Search in Google Scholar

Sun Q.Y., Wu G.M., Lai L., Park K.W., Cabot R., Cheong H.T., Day B.N., Prather R.S., Schatten H. (2001). Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction, 122: 155–163.Search in Google Scholar

Tao Y., Chen H., Tian N., Huo D., Li G., Zhang Y., Liu Y., Fang F., Ding J., Zhang X. (2010). Effects of L-ascorbic acid, a-tocopherol and co-culture on in vitro developmental potential of porcine cumulus cells free oocytes. Reprod. Domest. Anim., 45: 19–25.Search in Google Scholar

Tareq K.M., Akter Q.S., Khandoker M.A., Tsujii H. (2012). Selenium and vitamin E improve the in vitro maturation, fertilization and culture to blastocyst of porcine oocytes. J. Reprod. Dev., 58: 621–628.Search in Google Scholar

Tawatao K.M., Manaois F.V., Ocampo L.C., Ocampo M.B. (2015). Folic acid supplementation for bovine oocyte maturation and fertilization in vitro. J. Agric. Tech., 11: 2401–2409.Search in Google Scholar

Thiyagarajan B., Valivittan K. (2009). Ameliorating effect of vitamin E on in vitro development of preimplantation buffalo embryos. J. Assist. Rep. Genet., 26: 217–225.Search in Google Scholar

Vervoort L.M., Ronden J.E., Thijssen H.H. (1997). The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem. Pharm., 54: 871–876.Search in Google Scholar

Vos M., Esposito G., Edirisinghe J.N., Vilain S., Haddad D.M., Slabbaert J.R., Van Meensel S., Schaap O., De Strooper B., Meganathan R., Morais V.A., Verstreken P. (2012). Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science, 336: 1306–1310.Search in Google Scholar

Wiseman H. (1993). Vitamin D is a membrane antioxidant Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett., 326: 285–288.Search in Google Scholar

Wongsrikeao P., Nagai T., Agung B., Taniguchi M., Kunishi M., Suto S., Otoi T. (2007). Improvement of transgenic cloning efficiencies by culturing recipient oocytes and donor cells with antioxidant vitamins in cattle. Mol. Rep. Dev.: Incorporating Gamete Res., 74: 694–702.Search in Google Scholar

Xu J., Bishop C.V., Lawson M.S., Park B.S., Xu F. (2016). Anti-Müllerian hormone promotes pre-antral follicle growth, but inhibits antral follicle maturation and dominant follicle selection in primates. Hum. Reprod., 31: 1522–1530.Search in Google Scholar

Xu Y., Nisenblat V., Lu C., Li R., Qiao J., Zhen X., Wang S. (2018). Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reprod. Biol. Endocrinol., 16: 29–33.Search in Google Scholar

Yao H., Ye J. (2008). Long chain acyl-CoA synthetase 3-mediated phosphatidylcholine synthesis is required for assembly of very low-density lipoproteins in human hepatoma huh cells. J. Biol. Chem., 283: 849–854.Search in Google Scholar

Yashiro I., Tagiri M., Ogawa H., Tashima K., Takashima S., Hara H., Hirabayas-hi M., Hochi S. (2015). High revivability of vitrified-warmed bovine mature oocytes after recovery culture with a-tocopherol. Reproduction, 149: 347–355.Search in Google Scholar

Yu X.X., Liu Y.H., Liu X.M., Wang P.C., Liu S., Miao J.K., Du Z.Q., Yang C.X. (2018). Ascorbic acid induces global epigenetic reprogramming to promote meiotic maturation and developmental competence of porcine oocytes. Sci. Rep., 8: 6132.Search in Google Scholar

Zacchini F., Toschi P., Ptak G.E. (2017). Cobalamin supplementation during in vitro maturation improves developmental competence of sheep oocytes. Theriogenology, 93: 55–61.Search in Google Scholar

Zhai B., Liu H., Li X., Dai L., Gao Y., Li C., Zhang L., Ding Y., Yu X., Zhang J. (2013). BMP15 prevents cumulus cell apoptosis through CCL2 and FBN1 in porcine ovaries. Cell. Phys. Biochem., 32: 264–278.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo