[Abdel-Ghani M., Yanagawa Y., Balboula A., Sakaguchi K., Kanno C., Katagi-ri S., Takahashi M., Nagano M. (2019). Astaxanthin improves the developmental competence of in vitro-grown oocytes and modifies the steroidogenesis of granulosa cells derived from bovine early antral follicles. Rep. Fert. Develop., 31: 272–281.]Search in Google Scholar
[Abdelnour S.A., Abd El-Hack M.E., Khafaga A.F., Arif M., Taha A.E., Noreldin A.E. (2018). Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J. Therm. Biol., 79: 120–134.]Search in Google Scholar
[Abdelnour S.A., Abd El-Hack M.E., Swelum A.A.-A., Saadeldin I.M., Noreldin A.E., Khafaga A.F., Al-Mutary M.G., Arif M., Hussein E.-S.O. (2019). The usefulness of retinoic acid supplementation during in vitro oocyte maturation for the in vitro embryo production of livestock: a review. Animals, 9: 561.]Search in Google Scholar
[Adeldust H., Zeinoaldini S., Kohram H., Roudbar M.A., Joupari M.D. (2015). In vitro maturation of ovine oocyte in a modified granulosa cells co-culture system and alpha-tocopherol supplementation: effects on nuclear maturation and cleavage. J. Anim. Sci. Technol., 57: 27.]Search in Google Scholar
[Alagawany M., Attia Y.A., Farag M.R., Elnesr S.S., Sameer A.N., Shafi M.E., Khaf-aga A.F., Ohran H., Alaqil A.A., Abd El-Hack M.E. (2020). The strategy of boosting the immune system under the COVID-19 pandemic. Front. Vet. Sci., 7: 570748.]Search in Google Scholar
[Alaluf S., Heinrich U., Stahl W., Tronnier H., Wiseman S. (2002). Dietary carotenoids contribute to normal human skin color and UV photosensitivity. J. Nutr., 132: 399–403.]Search in Google Scholar
[Almiñana C., Gil M.A., Cuello C., Caballero I., Roca J., Vazquez J.M., Gomez E., Martinez E.A. (2008). In vitro maturation of porcine oocytes with retinoids improves embryonic development. Rep. Fert. Develop., 20: 483–489.]Search in Google Scholar
[Arias-Álvarez M., García-García R., López-Tello J., Rebollar P., Gutiérrez-Adán A., Lorenzo P. (2018). α-Tocopherol modifies the expression of genes related to oxidative stress and apoptosis during in vitro maturation and enhances the developmental competence of rabbit oocytes. Rep. Fert. Develop., 30: 1728–1738.]Search in Google Scholar
[Assis L.C., Straliotto M.R., Engel D., Hort M.A., Dutra R.C., Bem A.F. (2014). β-Caryophyllene protects the C6 glioma cells against glutamate-induced excitotoxicity through the Nrf2 pathway. Neuroscience, 279: 220–231.]Search in Google Scholar
[Atikuzzaman M., Koo O.J., Kang J.T., Kwon D.K., Park S.J., Kim S.J., Gomez M.N.L., Oh H.J., Hong S.G., Jang G. (2011). The 9-cis retinoic acid signaling pathway and its regulation of prostaglandin-endoperoxide synthase 2 during in vitro maturation of pig cumulus cell-oocyte complexes and effects on parthenogenetic embryo production. Biol. Reprod., 84: 1272–1281.]Search in Google Scholar
[Attia Y.A., Hassan R.A., Tag El-Din A.E., Abou-Shehema B.M. (2011). Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow-growing chicks exposed to chronic heat stress. J. Anim. Phys. Anim. Nutr., 95: 744–755.]Search in Google Scholar
[Attia Y.A., Al-Harthi M.A., El-Shafey A.S., Rehab Y.A., Kim W.K. (2017). Enhancing tolerance of broiler chickens to heat stress by supplementation with vitamin E, vitamin C and/or probiotics. Ann. Anim. Sci., 17: 1–15.]Search in Google Scholar
[Attia Y.A., Abou-Shehema B., Abdellah A.A., Aly O.M., El-Naggar A. (2020 a). Effect of ascorbic acid and/or alpha-tocopherol supplementation on semen quality, metabolic profile, antioxidants status, and DNA of roosters exposed to heat stress. J. Anim. Plant Sci., 30: 325–335.10.36899/JAPS.2020.2.0051]Search in Google Scholar
[Attia Y.A., Al-Harthi MA., El-Maaty A., Hayum AM. (2020 b). Calcium and cholecalciferol levels on late phase-laying hens’ diets: effects on productive and egg quality traits, blood biochemistry and immune responses. Front. Vet. Sci., 7: 389.10.3389/fvets.2020.00389741296432850998]Search in Google Scholar
[Baldoceda-Baldeon L.M., Gagné D., Vigneault C., Blondin P., Robert C. (2014). Improvement of bovine in vitro embryo production by vitamin K2 supplementation. Reproduction, 148: 489–497.]Search in Google Scholar
[Basu A., Imrhan V. (2007). Tomatoes versus lycopene in oxidative stress and carcinogenesis: Conclusions from clinical trials. Euro. J. Clin. Nut., 61: 295–303.]Search in Google Scholar
[Booth S. (2012). Vitamin K: food composition and dietary intakes. Food Nutr. Res., 56: 5505.]Search in Google Scholar
[Cajuday L.A., Herrera A.A., Duran D.H. (2012). Effect of retinoic acid on the development of water buffalo embryos in vitro. Philipp J. Vet. Anim. Sci., 38: 107–116.]Search in Google Scholar
[Camarena V., Wang G. (2016). The epigenetic role of vitamin C in health and disease. Cell Mol. Life Sci., 73: 1645–1658.]Search in Google Scholar
[Castillo-Martín M., Yeste M., Soler A., Morató R., Bonet S. (2015). Addition of lascorbic acid to culture and vitrification media of IVF porcine blastocysts improves survival and reduces HSPA1A levels of vitrified embryos. Rep. Fert. Develop., 27: 1115–1123.]Search in Google Scholar
[Cerqua C., Casarin A., Pierrel F., Vazquez Fonseca L., Viola G., Salviati L., Trevisson E. (2019). Vitamin K2 cannot substitute coenzyme Q10 as electron carrier in the mitochondrial respiratory chain of mammalian cells. Sci. Rep., 9: 6553.]Search in Google Scholar
[Chen X., Xuanm B., Xu D., Wang Q., Cheng M., Jin Y. (2019), Crocin supplementation during oocyte maturation enhances antioxidant defence and subsequent cleavage rate. Rep. Dom. Anim., 54: 300–308.]Search in Google Scholar
[Chow C.K. (1979). Nutritional influence on cellular antioxidant defense systems. on cellular antioxidant defense systems. Am. J. Clin. Nutr., 32: 1066–1081.]Search in Google Scholar
[Chowdhury M.M.R., Choi B.H., Khan I., Lee K.L., Mesalam A., Song S.H., Kong I.K. (2017). Supplementation of lycopene in maturation media improves bovine embryo quality in vitro. Theriogenology, 103: 173–184.]Search in Google Scholar
[Chowdhury M.M.R., Mesalam A., Khan I., Joo M.D., Lee K.L., Xu L., Afrin F., Kong I.K. (2018). Improved developmental competence in embryos treated with lycopene during in vitro culture system. Mol. Reprod. Dev., 85: 46–61.]Search in Google Scholar
[Chwa M., Atilano S.R., Reddy V., Jordan N., Kim D.W., Kenney M.C. (2006). Increased stress-induced generation of reactive oxygen species and apoptosis in human keratoconus fibroblasts. Invest. Ophthalmol. Vis. Sci., 247: 1902–1910.]Search in Google Scholar
[Ciepiela P., Dulęba A.J., Kowaleczko E., Chełstowski K., Kurzawa R. (2018). Vitamin D as a follicular marker of human oocyte quality and a serum marker of in vitro fertilization outcome. J. Assisted Rep. Gen., 35: 1265–1276.]Search in Google Scholar
[Conceição J.C.Z., Moura M.T., Ferreira-Silva J.C., Cantanhêde L.F., Chaves R.M., Lima P.F., Olivera M.A.L. (2016). Incidence of apoptosis after retinoids and insulinlike growth factor-I (IGF-I) supplementation during goat in vitro embryo production. Zygote, 24: 808–813.]Search in Google Scholar
[D’Aniello C., Cermola F., Patriarca E.J.Minchiotti G. (2017). Vitamin C in stem cell biology: impact on extracellular matrix homeostasis and epigenetics. Stem Cells Int., 8936156.10.1155/2017/8936156541586728512473]Search in Google Scholar
[Dalvit G., Llanes S.P., Descalzo A., Insani M., Beconi M., Cetica P. (2005). Effect of alpha-tocopherol and ascorbic acid on bovine oocyte in vitro maturation. Rep. Dom. Anim., 40: 93–97.]Search in Google Scholar
[Deng L., Elmore C.L., Lawrance A.K., Matthews R.G., Rozen R. (2008). Methionine synthase reductase deficiency results in adverse reproductive outcomes and congenital heart defects in mice. Mol. Genet. Metab., 94: 336e42.]Search in Google Scholar
[Fabris A., Pacheco A., Cruz M., Puente J.M., Fatemi H., Garcia-Velasco J.A. (2014). Impact of circulating levels of total and bioavailable serum vitamin D on pregnancy rate in egg donation recipients. Fertil. Steril., 102: 1608–1612.]Search in Google Scholar
[Farzollahi M., Tayefi-Nasrabadi H., Mohammadnejad D., Abedelahi A. (2016). Supplementation of culture media with vitamin E improves mouse antral follicle maturation and embryo development from vitrified ovarian tissue. J. Obstet. Gynaecol. Res., 42: 526–535.]Search in Google Scholar
[Gad A., Abu Hamed S., Khalifa M., Amin A., El-Sayed A., Swiefy S.A., El-Assa S. (2018). Retinoic acid improves maturation rate and upregulates the expression of antioxidant-related genes in in vitro matured buffalo (Bubalus bubalis) oocytes. Inter. J. Vet. Sci. Med., 6: 279–285.]Search in Google Scholar
[Gadhok A.K., Sinha M., Khunteta R., Vardey S.K., Upadhyaya C., Sharma T.K., Jha M. (2011). Serum homocysteine level and its association with folic acid and vitamin B12 in the third trimester of pregnancies complicated with intrauterine growth restriction. Clin. Lab., 57: 933e8.]Search in Google Scholar
[Gagnon A., Khan D.R., Sirard M.-A., Girard C., Laforest J.-P., Richard F.J. (2015). Effects of intramuscular administration of folic acid and vitamin B12 on granulosa cells gene expression in postpartum dairy cows. J. Dairy Sci., 98: 7797–7809.]Search in Google Scholar
[Gholamnezhad Z., Koushyar H., Byrami G., Boskabady M.H. (2013). The extract of Crocus sativus and its constituent safranal, affect serum levels of endothelin and total protein in sensitized guinea pigs. Iran J. Basic Med. Sci., 16: 1022–1026.]Search in Google Scholar
[Gómez E., Royo L.J., Duque P., Carneiro G., Hidalgo C., Goyache F., Loren-zo P.L., Alvarez I., Facal N., Díez C. (2003). 9-cis-retinoic acid during in vitro maturation improves development of the bovine oocyte and increases midkine but not IGF-I expression in cumulus-granulosa cells. Mol. Rep. Dev., 66: 247–255.]Search in Google Scholar
[Guo J., Shi L., Gong X., Jiang M., Yin Y., Zhang X., Yin H., Li H., Emori C., Sugiu-ra K., Eppig J.J., Su Y.-Q. (2016). Oocyte-dependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes. J. Cell Sci., 129: 3091–3103.]Search in Google Scholar
[Hashem N.M., Gonzalez-Bulnes A. (2020) State-of-the-art and prospective of nanotechnologies for smart reproductive management of farm animals. Animals, 10: 840.10.3390/ani10050840727844332414174]Search in Google Scholar
[Hashem N.M., Abd-Elrazek D., Abo-Elezz Z.R., Latif M.G.A. (2016). Effect of vitamin A or C on physiological and reproductive response of Rahmani ewes during subtropical summer breeding season. Small Rumin. Res., 144: 313–319.]Search in Google Scholar
[Hashem N.M., Abu-Tor E.M., Abo-Elezz Z.R., Latif M.G.A. (2019). Relevance of antioxidant vitamin supplementation for improvement of milk production, milk quality and energy status of lactating ewes. Small Rumin. Res., 177: 153–159.]Search in Google Scholar
[Hashem N.M., Gonzalez-Bulnes A., Simal-Gandara J. (2020). Polyphenols in farm animals: source of reproductive gain or waste? Antioxidants, 9: 1023.10.3390/antiox9101023758902833096704]Search in Google Scholar
[Hattori M., Takesue K., Nishida N., Kato Y., Fujihara N. (2000). Inhibitory effect of retinoic acid on the development of immature porcine granulosa cells to mature cells. J. Mol. Endocrinol., 25: 53–61.]Search in Google Scholar
[Huang X., Gao S., Xia W., Hou S., Wu K. (2013). Folic acid facilitates in vitro maturation of mouse and Xenopus laevis oocytes. Brit. J. Nutr., 109: 1389–1395.]Search in Google Scholar
[Ikeda S., Koyama H., Sugimoto M., Kume S. (2012). Roles of one-carbon metabolism in preimplantation period effects on short-term development and long-term programming. J. Rep. Dev., 58: 38e43.]Search in Google Scholar
[Institute of Medicine, Food and Nutrition Board (1998). Dietary reference intakes: thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington DC: National Academy Press.]Search in Google Scholar
[Intakes IoMSCotSEoDR (1998). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academies Press, US.]Search in Google Scholar
[Islam R., Deb G.K., Kabir A., Miraz F.H., Nahar T.N., Hossain J., Paul S. (2017). Supplementation of 9-cis retinoic acid in the in vitro maturation medium increase blastocyst development rate and quality. Asian J. Med. Biol. Res., 3: 516–520.]Search in Google Scholar
[Ivanova D., Zhelev Z., Getsov P., Nikolova B., Aoki I., Higashi T., Bakalova R. (2018). Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effect. Redox Biol., 16: 352–358.]Search in Google Scholar
[Jeong Y.W., Park S.W., Hossein M.S., Kim S., Kim J.H., Lee S.H., Kang S.K., Lee B.C., Hwang W.S. (2006). Antiapoptotic and embryotrophic effects of alpha-tocopherol and L-ascorbic acid on porcine embryos derived from in vitro fertilization and somatic cell nuclear transfer. Theriogenology, 66: 2104–2112.]Search in Google Scholar
[Khafaga A.F., El-Sayed Y.S. (2018). All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. Naunyn-Schmiedeberg’s Arch. Pharm., 391: 59–70.]Search in Google Scholar
[Laanpere M., Altmäe S., Stavreus-Evers A., Nilsson T.K., Yngve A., Salumets A. (2010). Folate-mediated one-carbon metabolism and its effect on female fertility and pregnancy viability. Nutr. Rev., 68: 99–113.]Search in Google Scholar
[Li J., Lin J.C., Wang H., Peterson J.W., Furie B.C., Furie B., Booth S.L., Volpe J.J., Rosenberg P.A. (2003). Novel role of vitamin K in preventing oxidative injury to developing oligodendrocytes and neurons. J. Neurosci., 23: 5816–5826.]Search in Google Scholar
[Li J., Wang H., Rosenberg P.A. (2009). Vitamin K prevents oxidative cell death by inhibiting activation of 12-lipoxygenase in developing oligodendrocytes. J. Neurosci. Res., 87: 1997–2005.]Search in Google Scholar
[Lima M.E., Pereira R.A., Maffi A.S., Tonellottodos Santos J., Martin C.E., Del Pino F.A., Leal S.D., Brauner C.C., Correa M.N. (2017). Butaphosphan and cyanocobalamin: effects on the aspiration of oocytes and in vitro embryo production in Jersey cows. Canadian J. Anim. Sci., 97: 633–639.]Search in Google Scholar
[Lin Z.L., Li Y.H., Xu Y.N., Wang Q.L., Namgoong S., Cui X.S., Kim N.H. (2014). Effects of growth differentiation factor 9 and bone morphogenetic protein 15 on the in vitro maturation of porcine oocytes. Reprod. Domest. Anim., 49: 219–227.]Search in Google Scholar
[Linster C.L., Van Schaftingen E. (2007). Vitamin C. The FEBS J., 274: 1–22.]Search in Google Scholar
[Liu X., Zhang W., Xu Y., Chu Y., Wang X., Li Q., Ma Z., Liu Z., Wan Y. (2019). Effect of vitamin D status on normal fertilization rate following in vitro fertilization. Rep. Biol. Endocrinol., 17: 59.]Search in Google Scholar
[Macháty Z., Day B.N., Prather R.S. (1998). Development of early porcine embryos in vitro and in vivo. Biol. Rep., 59: 451–455.]Search in Google Scholar
[Mc Cluskey S., Hall M., Stanton C., Devery R. (1999). α-tocopherol inhibits oxidative stress induced by cholestanetriol and 25-hydroxycholesterol in porcine ovarian granulosa cells. Mol. Cell. Biochem., 194: 217–225.]Search in Google Scholar
[Mein J.R., Lian F., Wang X. (2008). Biological activity of lycopene metabolites: implications for cancer prevention. Nutr. Rev., 66: 667–683.]Search in Google Scholar
[Molloy A.M., Kirke P.N., Troendle J.F., Burke H., Sutton M., Brody L.C., Scott J.M., Mills J.L. (2009). Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic Acid fortification. Pediatrics, 123: 917e23.]Search in Google Scholar
[Mostafavinia S.E., Khorashadizadeh M., Hoshyar R. (2016). Antiproliferative and proapoptotic effects of crocin combined with hyperthermia on human breast cancer cells. DNA Cell Biol., 35: 340–347.]Search in Google Scholar
[Moussa M., Yang C.Y., Zheng H.Y., Li M.Q., Yu N.Q., Yan S.F., Huang J.X., Shang J.H. (2019). Vitrification alters cell adhesion related genes in pre-implantation buffalo embryos: Protective role of β-mercaptoethanol. Theriogenology, 125: 317–323.]Search in Google Scholar
[Nalum-Naess S., Sliwka H.R., Partali V., Melo T.B., Naqvi K.R., Jackson H.L., Lockwood S.F. (2007). Hydrophilic carotenoids: Surface properties and aggregation of an astaxanthin-lysine conjugate, a rigid, long-chain, highly unsaturated and highly water-soluble tetracationic bolaamphiphile. Chem. Phys. Lip., 148: 63–69.]Search in Google Scholar
[Natarajan R., Shankar M.B., Munuswamy D. (2010). Effect of α-tocopherol supplementation on in vitro maturation of sheep oocytes and in vitro development of preimplantation sheep embryos to the blastocyst stage. J. Assist. Reprod. Genet., 27: 483–490.]Search in Google Scholar
[Norman A.W. (2006). Vitamin D receptor: new assignments for an already busy receptor. Endocrinology, 147: 5542–5548.]Search in Google Scholar
[Olson S.E., Seidel Jr G.E. (2000). Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol. Rep., 62: 248–252.]Search in Google Scholar
[Paffoni A., Ferrari S., Viganò P., Pagliardini L., Papaleo E., Candiani M., Tirel-li A., Fedele L., Somigliana E. (2014). Vitamin D deficiency and infertility: insights from in vitro fertilization cycles. J. Clin. Endocrin. Metab., 99: E2372–2376.]Search in Google Scholar
[Pepper M.R., Black M.M. (2011). B12 in fetal development Semin. Cell. Dev. Biol., 22: 619e23.]Search in Google Scholar
[Polyzos N.P., Anckaert E., Guzman L., Schiettecatte J., Van Landuyt L., Camus M., Smitz J., Tournaye H. (2014). Vitamin D deficiency and pregnancy rates in women undergoing single embryo, blastocyst stage, transfer (SET) for IVF/ICSI. Human Rep., 29: 2032–2040.]Search in Google Scholar
[Preynat A., Lapierre H., Thivierge M.C., Palin M.F., Cardinault N., Matte J.J., Desrochers A., Girard C.L. (2010). Effects of supplementary folic acid and vitamin B (12) on hepatic metabolism of dairy cows according to methionine supply. J. Dairy Sci., 93: 2130–2142.]Search in Google Scholar
[Pu Y., Wang Z., Bian Y., Zhang F., Yang P., Li Y., Zhang Y., Liu Y., Fang F., Cao H., Zhang X. (2014). All-transretinoic acid improves goat oocyte nuclear maturation and reduces apoptotic cumulus cells during in vitro maturation. Anim. Sci. J., 85: 833–839.]Search in Google Scholar
[Rosen C.J., Adams J.S., Bikle D.D., Black D.M., Demay M.B., Manson J.E., Mu-rad M.H., Kovacs C.S. (2012). The non-skeletal effects of vitamin D: an Endocrine Society scientific statement. Endocrine Rev., 33: 456–492.]Search in Google Scholar
[Rush E.C., Katre P., Yajnik C.S. (2014). Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease. Eur. J. Clin. Nutr., 68: 2e7.]Search in Google Scholar
[Saikhun K., Faisaikarm T., Ming Z., Lu K.H., Kitiyanant Y. (2008). α-Tocopherol and l-ascorbic acid increase the in vitro development of IVM/IVF swamp buffalo (Bubalus bubalis) embryos. Animal, 10: 1486–1490.]Search in Google Scholar
[Saini S., Sharma V., Kumar A., Thakur A., Bajwa K., Malakar D. (2018). Effect of folic acid supplementation on in vitro maturation of oocytes and folate cycle. Reprod. Fert. Develop., 30: 224–225.]Search in Google Scholar
[Sato S., Dochi O., Imai K. (2017). Effect of the addition of folic acid to maturation and culture media on development of the bovine blastocyst and its survival rate after freeze-thawing. Reprod. Fert. Develop., 29: 177–177.]Search in Google Scholar
[Sefid F., Ostadhosseini S., Hosseini S.M., Ghazvini Zadegan F., Pezhman M., Nasr Esfahani M.H. (2017). Vitamin K2 improves developmental competency and cryo-tolerance of in vitro derived ovine blastocyst. Cryobiology, 77: 34–40.]Search in Google Scholar
[Story E.N., Kopec R.E., Schwartz S.J., Harris G.K. (2010). An update on the health effects of tomato lycopene. Annu. Rev. Food Sci. Technol., 1: 189–210.]Search in Google Scholar
[Sun Q.Y., Wu G.M., Lai L., Park K.W., Cabot R., Cheong H.T., Day B.N., Prather R.S., Schatten H. (2001). Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction, 122: 155–163.]Search in Google Scholar
[Tao Y., Chen H., Tian N., Huo D., Li G., Zhang Y., Liu Y., Fang F., Ding J., Zhang X. (2010). Effects of L-ascorbic acid, a-tocopherol and co-culture on in vitro developmental potential of porcine cumulus cells free oocytes. Reprod. Domest. Anim., 45: 19–25.]Search in Google Scholar
[Tareq K.M., Akter Q.S., Khandoker M.A., Tsujii H. (2012). Selenium and vitamin E improve the in vitro maturation, fertilization and culture to blastocyst of porcine oocytes. J. Reprod. Dev., 58: 621–628.]Search in Google Scholar
[Tawatao K.M., Manaois F.V., Ocampo L.C., Ocampo M.B. (2015). Folic acid supplementation for bovine oocyte maturation and fertilization in vitro. J. Agric. Tech., 11: 2401–2409.]Search in Google Scholar
[Thiyagarajan B., Valivittan K. (2009). Ameliorating effect of vitamin E on in vitro development of preimplantation buffalo embryos. J. Assist. Rep. Genet., 26: 217–225.]Search in Google Scholar
[Vervoort L.M., Ronden J.E., Thijssen H.H. (1997). The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem. Pharm., 54: 871–876.]Search in Google Scholar
[Vos M., Esposito G., Edirisinghe J.N., Vilain S., Haddad D.M., Slabbaert J.R., Van Meensel S., Schaap O., De Strooper B., Meganathan R., Morais V.A., Verstreken P. (2012). Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science, 336: 1306–1310.]Search in Google Scholar
[Wiseman H. (1993). Vitamin D is a membrane antioxidant Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett., 326: 285–288.]Search in Google Scholar
[Wongsrikeao P., Nagai T., Agung B., Taniguchi M., Kunishi M., Suto S., Otoi T. (2007). Improvement of transgenic cloning efficiencies by culturing recipient oocytes and donor cells with antioxidant vitamins in cattle. Mol. Rep. Dev.: Incorporating Gamete Res., 74: 694–702.]Search in Google Scholar
[Xu J., Bishop C.V., Lawson M.S., Park B.S., Xu F. (2016). Anti-Müllerian hormone promotes pre-antral follicle growth, but inhibits antral follicle maturation and dominant follicle selection in primates. Hum. Reprod., 31: 1522–1530.]Search in Google Scholar
[Xu Y., Nisenblat V., Lu C., Li R., Qiao J., Zhen X., Wang S. (2018). Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reprod. Biol. Endocrinol., 16: 29–33.]Search in Google Scholar
[Yao H., Ye J. (2008). Long chain acyl-CoA synthetase 3-mediated phosphatidylcholine synthesis is required for assembly of very low-density lipoproteins in human hepatoma huh cells. J. Biol. Chem., 283: 849–854.]Search in Google Scholar
[Yashiro I., Tagiri M., Ogawa H., Tashima K., Takashima S., Hara H., Hirabayas-hi M., Hochi S. (2015). High revivability of vitrified-warmed bovine mature oocytes after recovery culture with a-tocopherol. Reproduction, 149: 347–355.]Search in Google Scholar
[Yu X.X., Liu Y.H., Liu X.M., Wang P.C., Liu S., Miao J.K., Du Z.Q., Yang C.X. (2018). Ascorbic acid induces global epigenetic reprogramming to promote meiotic maturation and developmental competence of porcine oocytes. Sci. Rep., 8: 6132.]Search in Google Scholar
[Zacchini F., Toschi P., Ptak G.E. (2017). Cobalamin supplementation during in vitro maturation improves developmental competence of sheep oocytes. Theriogenology, 93: 55–61.]Search in Google Scholar
[Zhai B., Liu H., Li X., Dai L., Gao Y., Li C., Zhang L., Ding Y., Yu X., Zhang J. (2013). BMP15 prevents cumulus cell apoptosis through CCL2 and FBN1 in porcine ovaries. Cell. Phys. Biochem., 32: 264–278.]Search in Google Scholar