1. bookVolume 13 (2013): Issue 4 (October 2013)
    Issue Editors: Magdalena Bielska, Jerzy Pilawski, Katarzyna Skupniewicz
Journal Details
License
Format
Journal
eISSN
2300-8733
ISSN
1642-3402
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Epigenetic Basis of Molecular Changes in Animal Cells with Particular Regard to Embryonic Development – A Review / Epigenetyczne Podstawy Przemian Molekularnych Zachodzących W Komórkach Zwierzęcych, Ze Szczególnym Uwzględnieniem Rozwoju Embrionalnego – Artykuł Przeglądowy

Published Online: 20 Oct 2013
Volume & Issue: Volume 13 (2013) - Issue 4 (October 2013) - Issue Editors: Magdalena Bielska, Jerzy Pilawski, Katarzyna Skupniewicz
Page range: 675 - 685
Journal Details
License
Format
Journal
eISSN
2300-8733
ISSN
1642-3402
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Regulation of gene expression is a complex process. Epigenetics is the study of heritable changes in gene expression independently of DNA sequence. Epigenetic control of gene transcription is based on two main processes. The first is reversible DNA methylation, primarily of cytosine at position C5, rarely in position N3, or of adenine at position C6 (Xu et al., 2010). The second process is the change in chromatin structure and function by chemical modification of histones, including mainly methylation, acetylation, and phosphorylation of histone amino acids (Zamudio et al., 2008). During development and differentiation of cells, changes occur in DNA methylation of genes. After fertilization there are dynamic histone modifications and changes in DNA methylation in zygotes. Use of methylation sensitive restriction enzymes causes a global demethylation in the early embryonic stage (Sulewska et al., 2007 b). De novo methylation of CpG sites is followed by embryo implantation. Next, during gastrulation most genes are methylated except the tissue-specific genes. The last wave of de novo methylation takes place during the gametogenesis and is dependent on sex (Sulewska et al., 2007 b). The aim of this work is to review the current knowledge about epigenetic mechanism of molecular changes in animal cells with particular regard to embryonic development.

Keywords

Allegrucci C., Thurston A., Lucas E., Young L. (2005). Epigenetics and the germline. Reproduction, 129: 137-149.Search in Google Scholar

Barlow D.P., Stöger R., Herrmann B.G., Saito K., Schweifer N. (1991). The mouse insulin-like type-2 receptor is imprinted and closely linked to the Tme locus. Nature, 349: 84-8 10.1038/349084a01845916Search in Google Scholar

Bartolomei M.S., Zemel S., Tilghman S.M. (1991). Parental imprinting of the mouse H19 gene. Nature, 351: 153-155.Search in Google Scholar

Belinsky S.A. (2004). Gene-promoter hypermethylation asabiomarker in lung cancer. Nat Rev. Cancer, 4: 707-717.Search in Google Scholar

Bestor T.H. (2000). The DNAmethyltransferases of mammals. Hum. Mol. Genet., 9: 2395-2402.Search in Google Scholar

Bi Y., Lv Z., Wang Y., Hai T., Huo R., Zhou Z., Zhou Q., Sha J. (2011). WDR82,akey epigenetics-related factor, playsacrucial role in normal early embryonic development in mice. Biol. Reprod., 84: 756-764.Search in Google Scholar

Biliya S., Bulla L.A. Jr. (2010). Genomic imprinting: the influence of differential methylation in the two sexes. Exp. Biol. Med., 235: 139-147.Search in Google Scholar

Brena R.M., Huang T.H., Plass C. (2006). Quantitative assessment of DNAmethylation: Potential applications for disease diagnosis, classification, and prognosis in clinical settings. J. Mol. Med., 84: 365-377.Search in Google Scholar

Brinkman A.B., Stunnenberg H.G. (2009). Strategies for epigenome analysis. In: Epigenomics, Ferguson-Smith A.C., Greally J.M., Martienssen R.A. (eds). Springer Sci. Business Media, pp. 3-17.10.1007/978-1-4020-9187-2_1Search in Google Scholar

Brower V. (2011). Epigenetics: Unravelling the cancer code. Nature, 471: 12-13.Search in Google Scholar

Carrell D.T. (2012). Epigenetics of the male gamete. Fertil. Steril., 97: 267-274.Search in Google Scholar

De Chiara T.M., Robertson E.J., Efstratiadis A. (1991). Parental imprinting of the mouse insulin-like growth factor IIgene. Cell, 64: 849-859.Search in Google Scholar

Donnison M., Beaton A., Davey H.W., Broadhurst R., L ' Huillier P., Pfeffer P.L. (2005). Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development, 132: 2299-2308.Search in Google Scholar

Eads C.A., Danenberg K.D., Kawakami K., Saltz L.B., Danenberg P.V., Laird P.W. (1999). Cp Gisland hypermethylation in human colorectal tumors is not associated with DNAmethyltransferase overexpression. Cancer Res., 59: 2302-2306.Search in Google Scholar

El - Deiry W.S., Nelkin B.D., Celano P., Yen R.W., Falco J.P., Hamilton S.R., Bay- lin S.B., (1991). High expression of the DNAmethyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc. Natl. Acad. Sci. USA, 88: 3470-3474.Search in Google Scholar

El Hajj N., Trapphoff T., Linke M., May A., Hansmann T., Kuhtz J., Reifen - berg K., Heinzmann J., Niemann H., Daser A., Eichenlaub - Ritter U., Zech - ner U., Haaf T. (2011). Limiting dilution bisulfite (pyro)sequencing reveals parent-specific methylation patterns in single early mouse embryos and bovine oocytes. Epigenetics, 6: 1176-1188.Search in Google Scholar

Fryxell K.J., Zuckerkandl E. (2000). Cytosine deamination playsaprimary role in the evolution of mammalian isochores. Mol. Biol. Evol., 17: 1371-1383.Search in Google Scholar

Fuks F. (2005). DNAmethylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev., 15: 490-495.Search in Google Scholar

Gasperowicz M., Natale D.R. (2011). Establishing three blastocyst lineages-then what?. Biol. Reprod., 84: 621-630.Search in Google Scholar

Goll M.G., Bestor T.H. (2005). Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem., 74: 481-514.Search in Google Scholar

Goll M.G., Kirpekar F., Maggert K.A., Yoder J.A., Hsieh C.L., Zhang X., Golic K.G., Jacobsen S.E., Bestor T.H. (2006). Methylation of t RNAAsp by the DNAmethyltransferase homolog Dnmt2. Science, 311: 395-398.Search in Google Scholar

Gos M. (2013). Epigenetic mechanisms of gene expression regulation in neurological diseases. Acta Neurobiol. Exp., 73: 19-37.Search in Google Scholar

Hayette S., Thomas X., Jallades L., Chabane K., Charlot C., Tigaud I., Gazz o S., Morisset S., Cornillet- Lefebvre P., Plesa A., Huet S., Renneville A., Salles G., Nicolini F.E., Magaud J.P., Michallet M. (2012). High DNAmethyltransferase DNMT3Blevels:apoor prognostic marker in acute myeloid leukemia. PLo S One, 7: e51527.Search in Google Scholar

Hemberger M., Udayashankar R., Tesar P., Moore H., Burton G.J. (2010). ELF5- enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta. Hum. Mol. Genet., 19: 2456-2467.Search in Google Scholar

Holliday R., Pugh J.E. (1975). DNAmodification mechanisms and gene activity during development. Science, 187: 226-232. Search in Google Scholar

Iqbal K., Kues W.A., Baulain U., Garrels W., Herrmann D., Niemann H. (2011). Species- specific telomere length differences between blastocyst cell compartments and ectopic telomere extension in early bovine embryos by human telomerase reverse transcriptase. Biol. Reprod., 84: 723-733.Search in Google Scholar

Issa J.P., Ahuja N., Toyota M., Bronner M.P., Brentnall T.A. (2001). Accelerated age-related Cp Gisland methylation in ulcerative colitis. Cancer Res., 61: 3573-3577.Search in Google Scholar

Jeltsch A., Nellen W., Lyko F. (2006). Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem. Sci., 31: 306-308.Search in Google Scholar

Jirtle R.L., Skinner M.K. (2007). Environmental epigenomics and disease susceptibility. Nat. Rev. Genet., 8: 253-262.Search in Google Scholar

Jones P.A. (1997). DNAmethylation and cancer. In: Encyclopedia of cancer. Vol 1. Editiorial directors; Bertino JR, ed-in-chief. San Diego. London, Boston, New York, Sydney, Tokyo, Toronto. Academic Press, pp. 501-507.Search in Google Scholar

Kawahara M., Morita S., Takahashi N., Kono T. (2009). Defining contributions of paternally methylated imprinted genes at the Igf2-H19 and Dlk1-Gtl2 domains to mouse placentation by transcriptomic analysis. J. Biol. Chem., 284: 17751-17765.Search in Google Scholar

Kobayashi H., Sakurai T., Imai M., Takahashi N., Fukuda A., Yayoi O., Sato S., Nakabayashi K., Hata K., Sotomaru Y., Suzuki Y., Kono T. (2012). Contribution of intragenic DNAmethylation in mouse gametic DNAmethylomes to establish oocyte-specific heritable marks. PLo S Genetics, 8: e1002440.Search in Google Scholar

Kohda T., Ishino F. (2013). Embryo manipulation via assisted reproductive technology and epigenetic asymmetry in mammalian early development. Philos T. Roy. Soc. B., 368: 20120353.Search in Google Scholar

Kuckenberg P., Buhl S., Woynecki T.,van Fürden B., Tolkunova E., Seiffe F., Moser M., Tomilin A., Winterhager E., Schorle H. (2010). The transcription factor TCFAP2C/AP-2gamma cooperates with CDX2 to maintain trophectoderm formation. Mol. Cell. Biol., 30: 3310-3320.Search in Google Scholar

Lee P.J., Washer L.L., Law D.J., Boland C.R., Horon I.L., Feinberg A.P. (1996). Limited up-regulation of DNAmethyltransferase in human colon cancer reflecting increased cell proliferation. Proc. Natl. Acad. Sci. USA, 93: 10366-10370.Search in Google Scholar

Loh Y.H., Zhang W., Chen X., George J., Ng H.H. (2007). Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Gene. Dev., 21: 2545-2557.Search in Google Scholar

Market Velker B.A., Denomme M.M., Mann M.R. (2012). Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture. Biol. Reprod., 86: 1-16.Search in Google Scholar

Ng H.H., Bird A. (1999). DNAmethylation and chromatin modification. Curr. Opin. Genet. Dev., 9: 158-163.Search in Google Scholar

Ng R.K., Dean W., Dawson C., Lucifero D., Madeja Z., Reik W., Hemberger M. (2008). Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell Biol., 10: 1280-1290.Search in Google Scholar

Niemann H., Tian X.C., King W.A., Lee R.S. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction, 135: 151-163.Search in Google Scholar

Petronis A. (2010). Epigenetics asaunifying principle in the aetiology of complex traits and diseases. Nature, 465: 721-727.Search in Google Scholar

Reik W., Santos F., Dean W. (2003). Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology, 59: 21-32.Search in Google Scholar

Riggs A.D. (1975). Xinactivation, differentiation, and DNAmethylation. Cytogenet. Cell Genet., 14: 9-25.Search in Google Scholar

Robertson K.D., Wolffe A.P. (2000). DNAmethylation in health and disease. Nature Reviews. Genetics, 1: 11-19.Search in Google Scholar

Saitou M., Kagiwada S., Kurimoto K. (2012). Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development, 139: 15-31.Search in Google Scholar

Santos F., Dean W. (2004). Epigenetic reprogramming during early development in mammals. Reproduction, 127: 643-651.Search in Google Scholar

Schoeftner S., Blanco R., Lopezde Silanes I., Muñoz P., Gómez- López G., Flores J.M., Blasco M.A. (2009). Telomere shortening relaxes Xchromosome inactivation and forces global transcriptome alterations. Proc. Natl. Acad. Sci. USA, 106: 19393-19398. Shivapurkar N., Stastny V., Suzuki M., Wistuba I.I., Li L., Zheng Y., Feng Z., Hol B., Prinsen C., Thunnissen F.B., Gazdar A.F. (2007). Application ofamethylation gene panel by quantitative PCRfor lung cancers. Cancer Lett., 247: 56-71.Search in Google Scholar

Smith C.S., Berg D.K., Berg M., Pfeffer P.L. (2010). Nuclear transfer-specific defects are not apparent during the second week of embryogenesis in cattle. Cell Reprogram., 12: 699-707.Search in Google Scholar

Soejima H., Higashimoto K. (2013). Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders. J. Hum. Genet., doi: 10.1038/jhg.2013.51.10.1038/jhg.2013.5123719190Search in Google Scholar

Sulewska A., Niklinska W., Kozlowski M., Minarowski L., Naumnik W., Niklin - ski J., Dabrowska K., Chyczewski L. (2007 a). Detection of DNAmethylation in eucaryotic cells. Folia Histochem. Cyto., 45: 315-324.Search in Google Scholar

Sulewska A., Niklinska W., Kozlowski M., Minarowski L., Naumnik W., Niklin - ski J., Dabrowska K., Chyczewski L. (2007 b). DNAmethylation in states of cell physiology and pathology. Folia Histochem. Cyto., 45: 149-158.Search in Google Scholar

Takahashi N., Okamoto A., Kobayashi R., Shirai M., Obata Y., Ogawa H., Soto - maru Y., Kono T. (2009). Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Hum. Mol. Genet., 18: 1879-1888.Search in Google Scholar

Tamaru H., Selker E.U. (2001). Ahistone H3 methylotransferase controls DNAmethylation in Neurospora crassa. Nature, 414: 277-283.Search in Google Scholar

Torres - Padilla M.E., Parfitt D.E., Kouzarides T., Zernicka - Goetz M. (2007). Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature, 445: 214-218.Search in Google Scholar

Vermeiden J.P., Bernardus R.E. (2013). Are imprinting disorders more prevalent after human in vitro fertilization or intracytoplasmic sperm injection? Fertil. Steril., 99: 642-651. Search in Google Scholar

de Waal E.,Yamazaki Y., Ingale P., Bartolomei M.S.,Yanagimachi R., Mc Car rey J.R. (2012). Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI-derived mice. Hum. Mol. Genet., 21: 4460-4472.Search in Google Scholar

Waddington C.H. (1942). The epigenotype. Endeavour, 1: 18-20.Search in Google Scholar

Xu F., Mao C., Ding Y., Rui C., Wu L., Shi A., Zhang H., Zhang L., Xu Z. (2010). Molecular and enzymatic profiles of mammalian DNAmethyltransferases: structures and targets for drugs. Curr. Med. Chem., 17: 4052-4071.Search in Google Scholar

Zamudio N.M., Chong S., O ’ Bryan M.K. (2008). Epigenetic regulation in male germ cells. Reproduction, 136: 131-146.Search in Google Scholar

Zhou J., Chehab R., Tkalcevic J., Naylor M.J., Harris J., Wilson T.J., Tsao S., Tel- lis I., Zavarsek S., Xu D., Lapinskas E.J., Visvader J., Lindeman G.J., Thomas R., Ormandy C.J., Hertzog P.J., Kola I., Pritchard M.A. (2005). Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. EMBO J., 24: 635-644.7. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo